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We will sketch Weil’s proof of his famous conjectures for abelian varieties. Then we will
explain how this can be used to deduce these statements for curves using the theory of the
Jacobian. We follow [1].
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1 Preliminaries

1.1 Basics of abelian varieties

In our conventions, we set a variety to be a geometrically reduced separated scheme of finite
type over a field k (not necessarily algebraically closed). A group variety is a group object in
the category of varieties.

Definition 1.1. An abelian variety is a complete connected group variety.

Automatically, abelian vaieties are smooth, geometrically connected, and geometrically
irreducible. The prototypical example of an abelian variety is an elliptic curve. In general
though, the equations used to define abelian varieties are extremely complex and cannot be
used. We begin by showing that abelian varieties are abelian as groups and projective.

Proposition 1.2. Abelian varieties are abelian.
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Sketch. The key point is the following lemma: if V is complete and V × W is geometrically
irreducible, then any map α : V × W → U with α(V × {w0}) = α({v0} × W ) = u0, then
α = u0. This is used to show that any map between abelian varieties is the composition of a
homomorphism and a translation. Indeed, if α(0) = 0, apply the lemma to α(a1, a2) = α(a1 +
a2) − α(a1) − α(a2). In particular, the inverse map must be a homomorphism, implying that
abelian varieties are indeed abelian.

Let us now state the ‘theorem of the cube’ and the ‘theorem of the square.’

Theorem 1.3 (The cube). Let (U, u0), (V, v0), (W,w0) be complete geometrically irreducible va-
rieties. Then if some invertible sheaf L on U × V × W is trivial on the three ‘faces’, it is itself
trivial.

This can be used to prove:

Theorem 1.4 (The square). For all invertible sheaves L on A and points a, b ∈ A(k), we have

t∗a+bL ⊗ L ∼= t∗aL ⊗ t∗bL.

In particular, a 7→ t∗aL ⊗ L−1 : A(k) → Pic(A) is a homomorphism, and if
∑
ai = 0, then

⊗it∗aiL = Ln. In terms of divisors, this means that the map

a 7→ [Da −D] : A(k)→ Pic(A)

is a homomorphism. These ideas are used in the following proposition.

Proposition 1.5. Abelian varieties are projective.

Sketch. Recall that to give a projective embedding of a variety, one may give an ample divisor,
or a complete linear system that separates points and tangent vectors. We first construct a
divisorD =

∑
Zi that separates 0 and tangents at 0. This is essentially done by taking hyper-

planes which cut 0 off from other points/vectors and using the descending chain condition.

We now claim that 3D is very ample. Indeed, by the theorem of the square, the complete
linear system defined by 3D includes∑

Zi,ai + Zi,bi + Zi,−ai−bi .

We can use such constructions to separate points and tangent vectors.

Note that these sorts of arguments assume that k is algebraically closed. However, these
results hold in general; see [1] Proposition I.6.6.

Finally, we define theNéron-Severi groupof a complete smooth variety: NS(V ) := Pic(V )/Pic0(V ).
It is always finitely generated. For abelian varieties, the map L 7→ λL gives an injection
NS(A) ↪→ Hom(A,A∨), which one can prove (following Tate) is a free Z-module of rank ≤
4 dim(A)2.

1.2 Isogenies and the Tate module

Definition 1.6. An isogeny f : A→ B of abelian varieties is a homomorphism of abelian varieties
that is surjective and has finite kernel.

Definition 1.7. The degree of an isogeny α : A→ B is given by the degree [k(A) : α∗k(B)].
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Let α be an isogeny of degree d. Isogenies are flat. If α is separable, then it is étale outside
of the ramification points. But the homogeneity of an abelian variety implies that if one point
is ramified then they all are. So separable isogenies are étale. Furthermore, if k is algebraically
closed, each fiber has cardinality d.

Theorem 1.8. Themap nA, multiplicion by n on an abelian varietyA of dimension g, is an isogeny
of degree n2g. Furthermore, nA is étale if and only if ch(k) - n.

For a proof, see [1], Theorem I.7.2. The idea is the following: we can find a symmetric very
ample invertible sheaf L on A. Using the theorem of the cube we get that (nA)∗L ∼= Ln2 . Then
translate this into the language of divisors.

This allows us to define the l-adic Tate module as follows. Let An(k) be the kernel of nA.

Definition 1.9. Fix l to be a prime not equal to ch(k). Then we define the l-adic Tate module as

Tl(A) = lim
←
Aln(ksep).

Furthermore, define Vl(A) = Tl(A)⊗Z Q.

1.3 Sketch of the elliptic curve case

We will briefly sketch the proof of the Weil conjectures for elliptic curves. Full details may be
found in .

LetX be a smooth projective variety of dimension n over Fq. We define its zeta function by

Z(X, t) := exp

( ∞∑
r=1

Nr
tr

r

)
,

whereNr is the number of closed points ofX where considered over Fqr . If E/Fq is an elliptic
curve, then we wish to show that

Z(E, t) =
(1− αt)(1− βt)
(1− t)(1− qt)

,

where |α| = |β| = √q.

Let π be the Frobenius endomorphism. Then one shows that 1− π is separable, and thus

|E(Fq)| = | ker(1− π)| = deg(1− π).

Furthermore, π induces an endomorphism πl of the Tate module Tl(E). The characteristic
polynomial of πl is given by T 2−Tr(φl)T +det(φl). One shows that det(πl) = deg(φ) = q, while
Tr(πl) = 1 + deg(π)− deg(1− π) = 1 + q− |E(Fq)|, the famous “trace of Frobenius." Factoring
the characteristic polynomial as (T − α)(T − β), we get |α| = β| = √q. We do the same for πn
and points over Fqn and factor it as (T − αn)(T − βn).

The upshot is that |E(Fqn)| = deg(1 − πn) = det(1 − πnl ) = (1 − αn)(1 − βn). From here it
is easy to compute the zeta function by taking its log.
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2 The Weil conjectures for abelian varieties

2.1 The characteristic polynomial of an endomorphism

Let A/Fq be an abelian variety. The existence of the Tate module Tl(A) allows us to carry
out a similar plan as the one outlined above for elliptic curves. The first order of business
is to carefully define the characteristic polynomial of an endomorphism of A. Recall that for
elliptic curves, it is literally the characteristic polynomial of the corresponding action on the
Tate module. However, to show this is well-defined, we will instead define it in the following
way.

Theorem 2.1. Take α ∈ End(A) where A is an abelian variety of dimension g. Then there is a
uniquemonic polynomialPα(x) ∈ Z[x] such thatPα(r) = deg(π−r). ThenPα is the characteristic
polynomial of α.

For a proof, see Theorem I.10.9 in [1]. One first shows that α 7→ deg(α) is a polynomial
function of degree 2g. We now have the following proposition.

Proposition 2.2. For all primes l 6= ch(k), we have that Pα is the characteristic polynomial of α
acting on the Tate module VlA.

Here, we set deg(α) = 0 if α is not an isogeny. For a proof of this proposition, see [1],
Proposition I.10.20.

2.2 The easy half

As usual, let π be the Frobenius. We factor

Pπ(X) =

2g∏
i=1

(X − αi).

Then the Weil conjectures, modulo the functional equation, essentially boil down to the fol-
lowing statements.

Theorem 2.3. (a) Nm =
∏2g
i=1(1− αmi ).

(b) |ai| =
√
q. (Riemann hypothesis)

We will now prove (a) and, assuming (b), deduce the rationality of the zeta function. Part
(b) is more difficult, but we note that in the case of elliptic curves it was trivial. Indeed, in this
case there are only two roots which must be complex conjugates (since the trace is real) that
multiply to q; hence they have absolute value√q.

Proof of (a). It suffices to do the case m = 1; that is, show that N1 = Pπ(1). Since Pπ(1) =
deg(π− 1) andN1 = | ker(1− π)|, it suffices to show that π− 1 is étale. It suffices to check this
at 0, which can be done by calculating the differential.

Note that we can now prove the following Hasse-Weil type bound:

|Nm − qmg| ≤ 2g · qm(g−1/2) + (22g − 2g − 1)qm(g−1).

This is actually very simple: simply expand the product formula given by (a) and note that the
dominating term is qmg. The rest follows from an easy triangle inequality bound.
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Finally, we can express the zeta function as

Z(A, t) := exp

∑
r≥1

Nr
tr

r

 =
P1(t) · · ·P2g−1(t)

P0(t)P2(t) · · ·P2g(t)
,

where Pr(t) =
∏
i1<···<ir(1−aij t). This follows from a direct calculation. We will not verify the

functional equation here and instead focus on the Riemann hypothesis. For this, we need to
introduce more general machinery regarding abelian varieties.

2.3 The dual abelian variety, polarizations, and the Rosati involution

Thedual abelian variety, also knownas thePicard variety, is an abelian varietyA∨ that parametrizes
the elements of Pic0(A). Let us give a proper definition.

Definition 2.4. Let (A∨,P) be a pair where P is an invertible sheaf on A × A∨. Assume that
P|A×{b} ∈ Pic0(Ab) and P|{0}×A∨ is trivial. Then A∨ is the dual abelian variety of A and P is
the Poincaré sheaf if (A∨,P) satisfies the following universal property. For every other such pair
(T,L), there is a unique regular map α : T → A such that (1× α)∗P ∼= L.

In more conceptual terms, (A∨,P) represents the functor sending a variety T to the set of
line bundles on A parameterized by T .

The construction of the dual abelian variety is a special case of the construction of the
Picard scheme, which was famously done by Grothendieck. However, even this special case is
rather involved; one may consult [1] I.8.

Definition 2.5. A polarization λ of an abelian variety is an isogenyA→ A∨ such that, over k, we
have that λ becomes of the form λL for some ample sheaf L onAk. If the degree of a polarization is
1, then λ is called a principal polarization.

Recall that λL : A(k) → Pic(A) is defined by λL(a) = t∗aL ⊗ L−1. In fact, Pic0(A) may be
defined as those L for which λL = 0.

Let us see what all this means for elliptic curves. Recall that elliptic curves come with a
basepoint (at infinity; let us thus denote one by (E,P0). The dual abelian variety in this case
coincides with E, and the map P 7→ P −P0 gives at least a group isomorphism between E and
Pic0(E). This suggests why polzarized abelian varieties (as opposed to just abelian varieties)
may be a good generalization of elliptic curves.

Given an isogeny α : A → B, there is a map β : B → A such that β ◦ α = n. Thus, a
polrization has an inverse in Hom(A∨, A)⊗Q.

Definition 2.6. Letλ : A→ A∨ be a polarization onA. Then theRosati involution onEnd(A)⊗Q
corresponding to λ is

α 7→ α† = λ−1 ◦ α∨ ◦ λ.

The following theorem is key.

Theorem 2.7. The bilinear form
〈α, β〉 7→ Tr(α ◦ β†)

is positive definite.
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2.4 The Riemann hypothesis for abelian varieties

We wish to show that |ai| =
√
q. This follows from the next two lemmas.

Lemma 2.8. Fix a Rosati involution † on End(A)⊗Q. Then we have π† ◦ π = qA.

Lemma 2.9. If α† ◦ α = r for some integer r, then for any root a ∈ C of Pα, we have |a|2 = r.

Proof of Lemma 2.8. See Lemma II.1.2 in [1]. Here is a sketch. LetD be the ample divisor defin-
ing the polarization λ, so λ(a) = [Da −D]. Then we wish to show that

π∨ ◦ λ ◦ π = qλ.

We have LHS = π∗[Dπ(a) − D]. Note that if D = div(f), then π∗ sends this to div(f ◦ π) =
div(f q) = q div(f). This explains where the factor of q comes from.

Proof of Lemma 2.9. See Lemma II.1.3 in [1]. The main input is Theorem 2.7.

3 Jacobians and the Weil conjectures for curves

3.1 Construction of the Jacobian

The classical theory of Jacobians over C is beautiful, but we are working over finite fields here.
We will begin by constructing the Jacobian of a curve, an abelian variety that reflects some of
the curve’s important properties. In particular, the Frobenius on the curve induces the Frobe-
nius on its Jacobian. We can then use the Riemann hypothesis for the Jacobian to prove the
Riemann hypothesis for the curve we started with. It is worth pointing out that the Jacobian
of an elliptic curve coincides with the elliptic curve itself, so the arguments are simplified in
this case.

LetC be a smooth projective curve over k. For simplicity, we assume thatC(k) is nonempty;
see [1], III.1 for what happens otherwise. We wish to construct the Jacobian J such that J(k) =
Pic0(C). In fact, consider the following functor P 0

C(−) :

P 0
C(T ) = Pic0(C × T )/q∗ Pic0(T ).

Then the Jacobian J represents the functor P 0
C . We sketch the construction when k = k.

Define C(r) to be Cr/Sr; note that this can be written as Divr(C): the effective divisors of de-
gree r. The Jacobian J will be birational to C(r).

Fix P ∈ C(k) and take D,D′ ∈ C(g). By the Riemann-Roch theorem, we have that h0(D +
D′−gP ) ≥ 1, and in fact equality holds for an open subset ofC(g)×C(g). Then we can define a
rationalmultiplicationmapC(g)×C(g) → C(g) which is well-defined on this open subset. Then
arguments of Weil allow us to upgrade this C(g) 99K J to an abelian variety with an agreeing
addition law.

We now collect some results regarding the relation between C and its Jacobian J without
proof (see [1], III.2). First, we have a canonical isomorphism between the tangent space at 0
to the Jacobian and the differentials: T0(J) ∼= H1(C,OC). Second, fix P ∈ C(k) and consider
the symmetric invertible sheaf LP = L(∆ − C × {P} − {P} × C) on C × C. This defines
a map fP : C → J which sends Q 7→ L(Q) ⊗ L(P )−1. Note that in terms of divisors, this
really just sends Q to [Q − P ]. Then fP is a closed immersion and induces an isomorphism
Γ(J,Ω1

J) ∼= Γ(C,Ω1
C).
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3.2 The intersection number formula and the Riemann hypothesis

Let C be a smooth complete curve with Jacobian J . A map α : C → C induces an endomor-
phism α′ ∈ End(J) such that fP ◦ α = α′ ◦ fP for all P ∈ C(K). The key is the following
intersection number formula.

Proposition 3.1. For α ∈ End(C), we have

(Γα ·∆) = 1− Tr(α′) + deg(α).

To show this, we write f = fP and have the following commutative diagram.

C C × C

J J × J J × J

f×f

∆×∆∆

f 1×α′

We consider the sheaf L′(Θ) := L(m∗Θ−Θ× J − J ×Θ) on J × J . We compute the degree
of this sheaf by going around the commutative diagram in two ways. It takes nontrivial results
to make the calculation; see [1], III.11.

We now complete the proof. Let α be the Frobenius on C; then α′ is the Frobenius on J .
Then the LHS of Proposition 3.1 isN and the degree of α is q. Finally, by the result for abelian
varieties, the characteristic polynomial of the Frobenius of J acting on TlJ is a polynomial of
degree 2g whose roots have absolute value√q. Thus, we have the Hasse-Weil bound

|N − q − 1| ≤ 2g
√
q.

The Riemann hypothesis for curves follows easily from this (see for example my exposition of
the Weil conjectures for curves).

3.3 Connection with étale cohomology

It makes sense to explain what we have done in terms of étale cohomology. Recall that f∗ :
Γ(J,Ω1

J) ∼= Γ(C,Ω1
C) is an isomorphism; one can use this or other methods to show that we

also get an isomorphism H1(J,OJ) ∼= H1(C,OC). Recalling that the first étale cohomology
group is given by homomorphisms from the étale fundamental group, we also get an induced
isomorphismH1

et(J,Zl) ∼= H1
t (C,Zl). Furthermore, we can writeH1

et(J,Zl) ∼= (TlJ)∨.

Now we can rewrite Proposition 3.1 as

Γα ·∆ =

2∑
i=0

(−1)i Tr(α|H i
et(C,Zl)).

This statement generalizes to Grothendieck’s trace formula, which applies to all varieties
over finite fields (and constructible sheaves, etc.) As we have seen, in the case of curves it
gives the Hasse-Weil bound and thus the Riemann hypothesis assuming the result for abelian
varieties. It is not so simple for general varieties. However, it does lead to a proof of the other
Weil conjectures relatively straightforwardly.
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