The *J*-homomorphism

Caleb Ji

Summer 2021

1 Definitions

Definition 1.1 (*J*-homomorphism). Define the *J*-homomorphism

$$\pi_k(O(n)) \to \pi_{n+k}(S^n)$$

in the following way. Consider the natural action of O(n) on S^{n-1} . After suspension this gives a map $S^n \to S^n$ fixing a basepoint. This induces a map

$$\pi_k(O(n)) \to \pi_k(\Omega^n S^n) = \pi_{n+k}(S^n).$$

Similarly, or by embedding $U(n) \hookrightarrow O(2n)$, we obtain a complex J-homomorphism

$$\pi_k(U(n)) \to \pi_{2n+k}(S^{2n}).$$

By Bott periodicity and by the existence of stable homotopy, for n large enough the J-homomorphism is independent of n. We will be interested in these stable versions

$$J: \pi_k(O) \to \pi_k(\mathbf{S}), \qquad J_{\mathbb{C}}: \pi_k(U) \to \pi_k(\mathbf{S}).$$

Just like in the case of Bott periodicity, Atiyah generalized this phenomenon to all spaces, defining J(X), a certain quotient of K(X). Define two vector bundles to be fiber homotopy equivalent if their sphere bundles are homotopy equivalent.

Definition 1.2 (J(X)). The group J(X) consists of the vector bundles modulo stable fiber homotopy equivalence.

Thus, we can write J(X) = K(X)/T(X) and $\tilde{J}(X) = \tilde{K}(X)/T(X)$, where $T(X) \subset \tilde{K}(X)$ consists of the classes E - E' with E fiber homotopy equivalent to E'. To connect this back to the *J*-homomorphism, one shows that

$$\tilde{J}(S^i) = \operatorname{im} J_{\mathbb{C}} \subset \pi_{k-1}(\mathbf{S}).$$

Our primary goal is to understand the image of the *J*-homomorphism, and thus gain information about $\pi_k(\mathbf{S})$. Recall Bott periodicity:

$k \pmod{8}$	0	1	2	3	4	5	6	7
$\pi_k(O)$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	0	\mathbb{Z}	0	0	0	\mathbb{Z}

and the fact that $\pi_k(\mathbf{S})$ is finite. It can be shown that for $k \equiv 0, 1 \pmod{8}$, then J is injective. We are left with the case $k \equiv 3 \pmod{4}$, which is a very interesting case. To state the result, we recall the definition of the Bernoulli numbers. **Definition 1.3** (Bernoulli numbers). *The Bernoulli numbers* B_i *are the coefficients of the exponential generating function*

$$\frac{x}{e^x - 1} = 1 - \frac{x}{2} + \sum_{i \ge 1} B_i \frac{x^{2i}}{(2i)!}.$$

They begin $\frac{1}{6}, \frac{1}{30}, \frac{1}{42}, \frac{1}{30}, \frac{5}{66}, \frac{691}{2730}, \cdots$.

The Bernoulli numbers also show up in algebraic K-theory, special values of L-functions, Eisenstein series ... For k = 4s - 1, the statement is that the image of J is a cyclic group of order the denominator of $B_s/4s$ and is a direct summand of $\pi_k(\mathbf{S})$.

The proof makes use of the Adams operations. These are the analogue of cohomology operations in K-theory. Recall that a cohomology operation is a natural transformation $H^m(-;G) \rightarrow H^n(-;H)$, which amounts to an element of $[h_{K(G,m)}, h_{K(H,n)}] = H^n(K(G,m);H)$. The explicit computation of these is somewhat involved; for example, over $\mathbb{Z}/2$ the stable ones are given by the Steenrod algebra. By the same argument, the natural transformations of K-theory are given by K(BU). They can all be classified by the Adams operations.

Definition 1.4 (Adams operations). Let s_k be the *k*th Newton polynomial and let $\Lambda^i E$ be the *i*th exterior power of the vector bundle E. Then $\psi^k : K(-) \to K(-)$ is defined by

$$\psi^k(E) = s_k(\lambda^1(E), \cdots, \lambda^k(E)).$$

This definition is actually very natural. Basically, we begin with $\psi^k(L) = L^k$ for a line bundle L, and we want to extend this linearly to all vector bundles. Since $s_k(\sigma_1, \ldots, \sigma_k) = p_k$ (elementary to power sum), we have $\psi^k(L_1 \oplus \cdots \oplus L_n) = L_1^k \oplus \cdots \oplus L_n^k$. Then it is not hard to show by the splitting principle, the ψ^k give natural transformations that also satisfy $\psi^k \circ \psi^l = \psi^{kl}$ and $\psi^p(\alpha) \equiv \alpha^p \pmod{p}$ for prime p.

Finally, we define the *e*-invariant, which is a homomorphism $e : \pi_{2m-1}(S^{2n}) \to \mathbb{Q}/\mathbb{Z}$. Recall that the Chern character is defined by $ch(L) = e^{c_1(L)}$ and extending linearly by the splitting principle. It induces an isomorphism for finite CW complexes X:

$$ch: K(X) \otimes \mathbb{Q} \cong H^{\ell}X; \mathbb{Q}).$$

Definition 1.5 (*e*-invariant). For an element $f \in \pi_{2m-1}(S^{2n})$, construct the corresponding cofiber sequence $S^{2n} \to C_f \to \Sigma S^{2n-1}$ and take the corresponding exact sequence

$$0 \to \tilde{K}(S^{2m}) \to \tilde{K}(C_f) \to \tilde{K}(S^{2n}) \to 0.$$

Applying the Chern character, we simply get a commutative diagram

Pick generators $\alpha, \beta \in \mathbb{Z} \oplus \mathbb{Z}$ that come and go to 1, and do the same with $a, b \in \mathbb{Q} \oplus \mathbb{Q}$ with $ch(\alpha) = a$. Then $ch \beta = b + ea$, and this $e \in \mathbb{Q}/\mathbb{Z}$ is a well-defined invariant of f.

2 The image of J in $\pi_k(\mathbf{S})$

As alluded to above, we can analyze the image of *J* to gain information about $\pi_k(\mathbf{S})$.

Theorem 2.1 (Adams, Quillen). For $k \equiv 0, 1 \pmod{8}$, the image of $J : \mathbb{Z}/2 \to \pi_k(\mathbf{S})$ is injective. For k = 4s - 1, the image of $J : \mathbb{Z} \to \pi_k(\mathbf{S})$ is a cyclic group of order the denominator of $B_s/4s$ and is a direct summand of $\pi_k(\mathbf{S})$.

We give some indications of the proof. We focus on the image of J in the case k = 4s - 1.

A lower bound

For a lower bound of the size of the image, we use the *e*-invariant. Indeed, given a map $f : S^{4s-1} \to U(n)$ representing a generator of $\pi_{4s-1}(U)$, then we claim that

$$e(J_{\mathbb{C}}f) = \pm \frac{B_s}{2s}.$$

This shows that the order of the image of J in $\pi_{4s-1}(\mathbf{S})$ is divisible by the denominator of $\frac{B_s}{2s}$. This is half the number in the theorem – it takes a bit more work to get the extra factor of 2.

To prove this claim, we use the Thom space T(E) = D(E)/S(E) of a vector bundle (quotient of disk bundle by sphere bundle). One shows that the cone $C_{J_{\mathbb{C}}f}$ is the Thom space of the bundle $E_f \to S^{4s}$ determined by $f: S^{4k-1} \to U(n)$ viewed as a clutching function. Then one uses the Thom isomorphism to choose an appropriate generator β , used in the context of the *e*-invariant. We obtain an equation in terms of Chern classes, which when expanded in a Taylor series gives that the *e*-invariant is indeed the desired Bernoulli denominator.

An upper bound

The (exact) upper bound can proven through the Adams conjecture, which was proven by Quillen. They concern the Adams operations ψ^k defined earlier.

Theorem 2.2 (Adams conjecture). *For any finite CW complex* X *and any* $\alpha \in K(X)$ *and* $k \in \mathbb{Z}$ *, there exists* N *such that*

$$k^N(\psi^k(\alpha) - \alpha) \in T(X).$$

In other words, if we localize by k in J(X), then $\psi^k(\alpha) = \alpha$. We will assume this. One can then show that $\psi^k : \tilde{K}(S^{2n}) \to \tilde{K}(S^{2n})$ is multiplication by k^n . Thus, for sufficiently large N we have that

$$k^N(k^n - 1)\tilde{K}(S^{2n}) \subset T(S^{2n}).$$

This implies that the order of the image of $J_{\mathbb{C}}$ must divide d_n , where d_n is the largest integer that divides $k^N(k^n - 1)$ for all fixed k and any N. By elementary number theory, d_n is indeed the denominator of $\frac{B_s}{4s}$. This gives the desired upper bound.

3 Comments

The material here is taken from [2], [4], and [3]. There one can also find references to the original and more comprehensive accounts. Clausen has developed a p-adic version (after understanding the real version in terms of algebraic K-theory and spectra), and used it to provide a totally new proof of quadratic reciprocity and even Artin reciprocity.

References

- [1] Dustin Clausen. *p-adic J-homomorphisms and a product formula*, 2012. https://arxiv.org/abs/1110.5851
- [2] Anatoly Fomenko, Dmitry Fuchs. *Homotopical Topology*. Springer Internaional Publishing Switzerland (2016). 2nd edition.
- [3] Akhil Mathew. Notes on the J-homomorphism. Expository notes, retrieved online. http://math.uchicago.edu/~amathew/j.pdf
- [4] Allen Hatcher. Vector Bundles and K-theory, V (2005).