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1 Definitions

Definition 1.1 (J-homomorphism). Define the J-homomorphism

πk(O(n))→ πn+k(Sn)

in the following way. Consider the natural action of O(n) on Sn−1. After suspension this gives a
map Sn → Sn fixing a basepoint. This induces a map

πk(O(n))→ πk(ΩnSn) = πn+k(Sn).

Similarly, or by embedding U(n) ↪→ O(2n), we obtain a complex J-homomorphism

πk(U(n))→ π2n+k(S2n).

By Bott periodicity and by the existence of stable homotopy, for n large enough the J-
homomorphism is independent of n. We will be interested in these stable versions

J : πk(O)→ πk(S), JC : πk(U)→ πk(S).

Just like in the case of Bott periodicity, Atiyah generalized this phenomenon to all spaces,
defining J(X), a certain quotient of K(X). Define two vector bundles to be fiber homotopy
equivalent if their sphere bundles are homotopy equivalent.

Definition 1.2 (J(X)). The group J(X) consists of the vector bundles modulo stable fiber homo-
topy equivalence.

Thus, we can write J(X) = K(X)/T (X) and J̃(X) = K̃(X)/T (X), where T (X) ⊂ K̃(X)
consists of the classes E −E′ with E fiber homotopy equivalent to E′. To connect this back to
the J-homomorphism, one shows that

J̃(Si) = imJC ⊂ πk−1(S).

Our primary goal is to understand the image of the J-homomorphism, and thus gain in-
formation about πk(S). Recall Bott periodicity:

k (mod 8) 0 1 2 3 4 5 6 7
πk(O) Z/2 Z/2 0 Z 0 0 0 Z

and the fact thatπk(S) is finite. It can be shown that for k ≡ 0, 1 (mod 8), then J is injective.
We are left with the case k ≡ 3 (mod 4), which is a very interesting case. To state the result,
we recall the definition of the Bernoulli numbers.
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Definition 1.3 (Bernoulli numbers). The Bernoulli numbers Bi are the coefficients of the expo-
nential generating function
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The Bernoulli numbers also show up in algebraic K-theory, special values of L-functions,
Eisenstein series ... For k = 4s − 1, the statement is that the image of J is a cyclic group of
order the denominator of Bs/4s and is a direct summand of πk(S).

The proofmakes use of the Adams operations. These are the analogue of cohomology oper-
ations inK-theory. Recall that a cohomology operation is a natural transformationHm(−;G)→
Hn(−;H), which amounts to an element of [hK(G,m), hK(H,n)] = Hn(K(G,m);H). The explicit
computation of these is somewhat involved; for example, over Z/2 the stable ones are given
by the Steenrod algebra. By the same argument, the natural transformations of K-theory are
given byK(BU). They can all be classified by the Adams operations.

Definition 1.4 (Adams operations). Let sk be the kth Newton polynomial and let ΛiE be the ith
exterior power of the vector bundle E. Then ψk : K(−)→ K(−) is defined by

ψk(E) = sk(λ1(E), · · · , λk(E)).

This definition is actually very natural. Basically, we begin with ψk(L) = Lk for a line bun-
dle L, and we want to extend this linearly to all vector bundles. Since sk(σ1, . . . , σk) = pk (ele-
mentary to power sum), we have ψk(L1⊕· · ·⊕Ln) = Lk

1⊕· · ·⊕Lk
n. Then it is not hard to show

by the splitting principle, the ψk give natural transformations that also satisfy ψk ◦ ψl = ψkl

and ψp(α) ≡ αp (mod p) for prime p.

Finally, we define the e-invariant, which is a homomorphism e : π2m−1(S
2n)→ Q/Z. Recall

that the Chern character is defined by ch(L) = ec1(L) and extending linearly by the splitting
principle. It induces an isomorphism for finite CW complexesX:

ch : K(X)⊗Q ∼= H(X;Q).

Definition 1.5 (e-invariant). For an element f ∈ π2m−1(S2n), construct the corresponding cofiber
sequence S2n → Cf → ΣS2n−1 and take the corresponding exact sequence

0→ K̃(S2m)→ K̃(Cf )→ K̃(S2n)→ 0.

Applying the Chern character, we simply get a commutative diagram

0 Z Z⊕ Z Z 0

0 Q Q⊕Q Q 0

ch ch ch

Pick generators α, β ∈ Z ⊕ Z that come and go to 1, and do the same with a, b ∈ Q ⊕ Q with
ch(α) = a. Then chβ = b+ ea, and this e ∈ Q/Z is a well-defined invariant of f .

2 The image of J in πk(S)

As alluded to above, we can analyze the image of J to gain information about πk(S).

Theorem 2.1 (Adams, Quillen). For k ≡ 0, 1 (mod 8), the image of J : Z/2→ πk(S) is injective.
For k = 4s− 1, the image of J : Z→ πk(S) is a cyclic group of order the denominator ofBs/4s and
is a direct summand of πk(S).

We give some indications of the proof. We focus on the image of J in the case k = 4s− 1.
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A lower bound

For a lower bound of the size of the image, we use the e-invariant. Indeed, given a map f :
S4s−1 → U(n) representing a generator of π4s−1(U), then we claim that

e(JCf) = ±Bs

2s
.

This shows that the order of the image of J in π4s−1(S) is divisible by the denominator of
Bs
2s . This is half the number in the theorem– it takes a bit more work to get the extra factor of 2.

To prove this claim, weuse theThomspaceT (E) = D(E)/S(E) of a vector bundle (quotient
of disk bundle by sphere bundle). One shows that the cone CJCf is the Thom space of the
bundle Ef → S4s determined by f : S4k−1 → U(n) viewed as a clutching function. Then one
uses the Thom isomorphism to choose an appropriate generator β, used in the context of the
e-invariant. We obtain an equation in terms of Chern classes, whichwhen expanded in a Taylor
series gives that the e-invariant is indeed the desired Bernoulli denominator.

An upper bound

The (exact) upper bound can proven through the Adams conjecture, which was proven by
Quillen. They concern the Adams operations ψk defined earlier.

Theorem 2.2 (Adams conjecture). For any finite CW complex X and any α ∈ K(X) and k ∈ Z,
there exists N such that

kN (ψk(α)− α) ∈ T (X).

In other words, if we localize by k in J(X), then ψk(α) = α. We will assume this. One can
then show that ψk : K̃(S2n) → K̃(S2n) is multiplication by kn. Thus, for sufficiently large N
we have that

kN (kn − 1)K̃(S2n) ⊂ T (S2n).

This implies that the order of the image of JC must divide dn, where dn is the largest integer
that divides kN (kn − 1) for all fixed k and any N . By elementary number theory, dn is indeed
the denominator of Bs

4s . This gives the desired upper bound.

3 Comments

The material here is taken from [2], [4], and [3]. There one can also find references to the
original and more comprehensive accounts. Clausen has developed a p-adic version (after un-
derstanding the real version in terms of algebraic K-theory and spectra), and used it to provide
a totally new proof of quadratic reciprocity and even Artin reciprocity.
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