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Recall...

Simplicial sets are functors
∆op → Set.

A simplicial setX comes with face and degeneracy morphisms

di : Xn → Xn−1, si : Xn → Xn+1

for 0 ≤ i ≤ n. These come from di : [n− 1]→ [n] skipping i and si : [n+ 1]→ [n] repeating i.

Essentially everything that follows comes from the book Simplicial Homotopy Theory by Go-
erss and Jardine [2].

1 The Dold-Kan corespondence

1.1 Setup

Let A• be a simplicial abelian group. We define three nonnegatively-graded chain complexes
of abelian groups associated to A•.

• The Moore complex, denoted A.

This is the chain complex

· · · → An+1
∂n+1−−−→ An

∂n−→ An−1 · · ·
A−→1 ∂1A0

where ∂n =
∑n

i=0(−1)idi.

• The normalized chain complex, denoted NA.

Here NAn is the subgroup ker
⋂n−1

i=0

(
ker di : An → An−1

)
⊂ An, and the differential is

induced from that of the Moore complex:

· · · → NAn+1
(−1)n+1dn+1−−−−−−−−→ NAn

(−1)ndn−−−−−→ An−1 → · · · → NA1
−d1−−→ NA0

so ∂n = (−1)ndn.

• Amodulo degeneracies, denoted A/DA.

Here DAn is the subgroup generated by
⋃n−1

i=0

(
im si : An−1 → An

)
⊂ An, and the

chain complex is naturally obtained from quotienting each group in the Moore complex
by these.
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In the opposite direction, given a chain complex C (nonnegative, abelian groups), we can
define a simplicial abelian group Γ(C) as follows: let

Γ(C)n =
⊕

σ:[n]↠[k]

Ck.

We will construct the simplicial structure of Γ(C) as part of the proof of Dold-Kan.

Theorem 1.1 (Dold-Kan). The functor A• 7→ NA defines an equivalence between the categories
of simplicial abelian groups and nonnegatively graded chain complexes of abelian groups.

In fact, we will show that A• 7→ NA and C 7→ Γ(C) are inverse functors. We prove this in
the following steps.

1. Construct the simplicial abelian group structure on Γ(C).

2. Remark that Γ(C)/D(Γ(C)) ∼= C where Γ(C)/D(Γ(C)) is viewed as a chain complex.

3. Show the composition
NA

i−→ A
p−→ A/D(A)

is an isomorphism of chain complexes.

4. Prove that the natural map

ΓN(A)n =
⊕

σ:[n]↠[k]

NAk → An

is an isomorphism of abelian groups.

The proof of all of these requires nothingmore than some diagram-chasing and combinatorics.
3 and 4 are done by induction. 1 and 4 together, along with the fact that C 7→ Γ(C) is a functor
(which will follow from our proof of 1) imply that Γ ◦N is isomorphic to the identity on sim-
plicial abelian groups. 2 and 3 together imply thatN ◦Γ imply is isomorphic to the identity on
chain complexes.

1.2 Proof

1.2.1 Simplicial structure of Γ(C)

We need to put a simplicial structure on the data

Γ(C)n =
⊕

σ:[n]↠[k]

Ck.

That is, given θ : [m] → [n], we need to define the action of θ∗ : Ck → Γ(C)m =
⊕

σ′:[m]↠[s]Cs

where the domain Ck is indexed by some σ : [n]→ [k]. For this, we first factor the composition

[m]
θ−→ [n]

σ−→ [k] into [m]
p−→→ [s]

i
↪−→ [k].

Then we have a map i∗ : Ck → Cs and a choice of a surjection p : [m] ↠ [s]. Taking our choice
of σ′ to be p, we obtain the desired map

Ck
i∗−→ (Cs, p) ↪→

⊕
σ′:[m]↠[s]

Cs.

Moreover, these maps are functorial in the sense that C 7→ Γ(C) is indeed a functor from
chain complexes to simplicial abelian groups. This is fairly obvious by inspection.
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1.2.2 Γ(C)/D(Γ(C)) ∼= C

Recall that DAn consists of the degeneracies; i.e. the subgroup generated by images of the
maps si : An−1 → An. We claim that the images of the maps

si : Γ(C)n−1 =
⊕

σ′:[n−1]↠[s]

Cs → Γ(C)n =
⊕

σ:[n]↠[k]

Ck

generate everything but the case where n = k, from which the desired result easily follows.
But the image consists precisely of those σ which factor through as [n] → [n − 1] → [k], as
desired.

1.2.3 NA ∼= A/D(A)

It suffices to show that the natural map ϕ : NAn → (A/D(A))n is an isomorphism. We use
induction. Recall that NAn =

⋂
0≤i≤n−1 ker di. We define

NjAn =
⋂
i≤j

ker di and Dj(An) = span i≤j im si.

We induct on j to show thatNjAn
∼= An/Dj(An). For j = 0, we wish to show that if d0x = 0,

one simply needs to use the fact that s0d0 = 1⇒ d0s0 = 1. Then we have a split exact sequence

0→ D0An → An
x 7→x−s0d0x−−−−−−−→ N0An → 0

with splitting N0An → An given by the inclusion.

Now assume we have shown the result for 0, · · · , j − 1 and also for lesser n. We have the
following commutative diagram.

0 Nj−1An−1 Nj−1An NjAn 0

0 An−1/Dj−1(An−1) An/Dj−1(An) An/Dj(An) 0
sj

sj x 7→x−skdkx

∼= ∼= ϕ

One checks that both sequences are exact. The first two vertical arrows are isomorphisms by
the inductive hypothesis, so ϕ is an isomorphism as well.
Remark. It is not hard to show from this that in fact we have a splitting An

∼= NAn ⊕DAn.

1.2.4 ΓN(A)n ∼= An

We have a morphism of simplicial abelian groups defined by

Ψ :
⊕

σ:[n]↠[k]

NAk → An,

where Ψ(NAk, σ) = σ∗(NAk). We proceed by induction on n. The base case of n = 0 is trivial.
Next, assuming an isomorphism for 0, · · · , n− 1, we see that imΨ ⊃ DAn because Ψ is a mor-
phism of simplicial abelian groups. Since imΨ ⊃ NAn, by 3 we have that Ψ is surjective.

To show injectivity, suppose Ψ(x) = 0 where x = (x1, . . . , x(n+k−1
k )) where x1 corresponds

to [n] ↠ [n]. All the rest corresponding to some σi : [n] ↠ [k] admit a section f : [k] ↪→ [n] with
k < n. Then f∗(x) ∈ Γ(NA)k has identity component (corresponding to [k] ↠ [k]) given by xi.
But we have Ψf∗(x) = f∗Ψ(x) = 0, so by the inductive hypothesis f∗(x) = 0, so in particular
xi = 0. Finally, since NAn → An is just the inclusion for [n] ↠ [n], we have x1 = 0 as desired.
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1.3 Addenda

Proposition 1.2. The inclusion NA→ A is a homotopy equivalence.

One can construct an explicit homotopy operator; see [2] Theorem III.2.4.

Having proven Dold-Kan, let us now describe its significance and how it fits into simplicial
homotopy theory. In simplicial homotopy theory, we replace topological spaces with simpli-
cial sets, which turn out to be an incredibly useful model. They behave much nicer and we can
define analogues of many topological notions under these settings which are easier to work
with. One can show that by taking the geometric realization, these analogues give back what
we started with for topological spaces. Thus, one obtains natural proofs of important theorems
in algebraic topology which are proven in a relatively opaque manner classically.

We will begin by defining Kan complexes, which are the analogue in simplicial sets of Serre
fibrations in topological spaces. We give examples, notably of simplicial groups. It turns out
that these are the objects one uses to define simplicial homotopy and simplicial homotopy
groups. These simplicial homotopy groups are shown to coincide with the ordinary homotopy
groups of the geometric realization. All these ideas are best expressed (and further developed)
in the language ofmodel categories, whichwewill only touch briefly on. At this point, our work
proving Dold-Kan pays off as we can show that the homotopy groups of a simplicial abelian
group conicide with the homology groups of its associated chain complexes. This leads to a
slew of important results, such as the representability of ordinary cohomology and the spectral
definition of it.

2 Kan complexes

Proposition 2.1. The realization and singular functors are adjoint:

HomTop(|X|, Y ) ∼= HomS(X,SY ).

Proof. We have

HomTop(|X|, Y ) ∼= lim←−
∆n→X

HomTop(|∆n|, Y ) ∼= lim←−
∆n→X

HomS(∆
n, S(Y )) ∼= HomS(X,SY )

as desired.

Recall that the kth horn Λn
k ⊂ ∆n is the subcomplex generated by all n − 1-faces dj(ιn)

except dk(ιn).

Definition 2.2. A Kan fibration p : X → Y is a map of simplicial sets such that we can always
fill in the dotted arrow∆n → X making the following diagram commute.

Λn
k X

∆n Y

p

Compare this with the definition of Serre fibration, which one may define to be a map f :
T → U of topological spaces with the right lifting property with respect to |Λn

k | → |∆n|. We see
by adjointness that f is a Serre fibration if and only if S(f) : S(T )→ S(U) is a Kan extension.
The analogous statement for realizations is only true in one direction andmuchmore difficult:
the realization of a Kan complex is a Serre fibration. One can show that ∆n → ∗ is not a Kan
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extension.
Next, one defines a Kan complex, or a fibrant simplicial set to be a simplicial setX for which
p : X → ∗ is a Kan fibration. For instance, since |Λn

k | is a strong deformation retract of |∆n|, we
have that S(X) is a Kan complex. The simplicial set BG, where G is a groupoid, is also a Kan
complex. The following condition is equivalent to being a Kan complex:

Fo each n-tuple of (n − 1)-simplices (y0, . . . , ŷk, . . . , yn) of Y with diyj = dj−1yi if
i < j, i, j ̸= k, there is an n-simplex y such that diy = yi.

Proposition 2.3. Simplicial groupsH are fibrant.

Proof. We use induction. Suppose there is some n-simplex y such that diy = xi where
(x0, . . . , xk−1, xl−1, xl, . . . , xn) satisfies dixj = dj−1xi with l ≥ k+2. We would like to lower l to
l − 1. This works by choosing

y′ = sl−2(xl−1dl−1y
−1)y.

Indeed, one can check that di(xl−1dl−1y
−1) is generically e, and the extra terms are chosen so

that when i = l − 1 we have diy′ = xl−1.

Remark. Using more model category language, another way to characterize Kan fibrations are
the simplicial sets with the right lifting property with respect to all anodyne extensions. An
anodyne extension is an acyclic cofibration; that is an inclusion (cofibration) which is a weak
equivalence. One may also define anodyne extensions as those with the left lifting property
with respect to Kan fibrations.

3 Simplicial homotopy

Definition 3.1 (Homotopy of simplicial maps). If f, g : K → X are simplicial maps, then there
is a homotopy f → g if there exists a simplicial map h : K ×∆1 → X such that h ◦ (1, d1) = f and
h ◦ (1, d0) = g.

Note that this is not an equivalence relation; e.g. two maps ι0, ι1 : ∆1 → ∆n are only ho-
motopic in one direction. However, when the target is fibrant, then homotopy is an equivalence
relation.

Proposition 3.2. Let X be fibrant and L ⊂ K be an inclusion of simplicial sets. Then homotopy
of mapsK → X(relL) is an equivalence relation.

To prove this, one first shows the result for K = ∆0, L = ∅. That is, homotopy of vertices
of a fibrant X is an equivalence relation. This is done by choosing appropriate maps of horns
Λ2
i → X. For the general case, one show that the map (of function complexes as simplicial
sets)

i∗ : Hom(K,X)→ Hom(L,X)

is a fibration. But then homotopy of mapsK → X(relL) corresponds to homotopy of vertices
in the fibers of i∗ by the exponential law:

HomS(∆
1,Hom(K,X)) = HomS(K ×∆1, X).

For complete details, see [2], Corollary I.6.2.

Definition 3.3 (Simplicial homotopy groups). Let v ∈ X0 be a vertex of a Kan complexX. Then
we define πn(X, v) to be the homotopy classes of maps α : ∆n → X(rel ∂∆n) where ∂∆n gets sent
to v.
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How is the group structure defined? Well, given two n-simplices α, β : ∆n → X, we can
construct the following extension

Λn+1
n X

∆n+1

(v,...,v,α,−,β)

ω

where the vs are also taken to be n-simplices. One can check that ∂(dnω) = (v, . . . , v). Fur-
thermore the homotopy class of dnω is independent of choices. Thus we may define the group
operation by

[α] · [β] = [dnω].

As in the topological case, there is a long exact sequence of homotopy groups associated
to a fibration. But the key to comparing simplicial homotopy with ordinary homotopy is the
following theorem of Quillen, which is very nontrivial.

Theorem 3.4 (Quillen). The realization of a Kan fibration is a Serre fibration.

For a proof, see [2], Theorem I.10.10. Now we define a weak equivalence of simplicial sets
to be one that induces an isomorphism on all simplicial homotopy groups. Applying the above
theorem to the path loop fibration ΩX → PX → X gives that if X is a Kan complex, then
X 7→ S|X| is a weak equivalence. This leads to the following result.

Proposition 3.5. IfX is a complex with some vertex x, then

πn(X,x) ∼= πn(|X|, x).

All this is summarized in the following two theorems.

Theorem 3.6. In the category of simplicial sets, take cofibrations to be inclusions, fibrations to be
Kan fibrations, and weak equivalences to be those whose realization is a weak equivalence. Then
the category of simplicial sets is a closed model category.

Theorem 3.7. The realization and singular functors give a Quillen equivalence between simplicial
set and topological spaces.

4 Connections to cohomology

Given a simplicial set X, we can consider the simplicial abelian group Z[X] and define the
cohomology of X to be that of the Moore complex of Z[X]. Through the Dold-Kan theorem,
this will allow us to use our results on simplicial homotopy to study cohomology. The first key
result is the following.

Proposition 4.1. If A is a simplicial abelian group, then

πn(A•) ∼= Hn(NA) ∼= Hn(A).

Sketch. Indeed, we can see this on the level of sets. Everymap (∆n, ∂∆n)→ (A, 0) corresponds
to the n-simplices of A that are contained in NAn and are in the kernel of dn. The homotopy
equivalence classes correspond to being in the image of NAn+1. On the level of groups, note
that the group structure on the chain complex corresponds to the group structure on πn(A)
defined by the group operation on A. One checks that this conicides with the standard group
structure on πn(A) by showing it satisfies an appropriate interchange law.
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This is a really wonderful result. For example, suppose we are interested in the Eilenberg-
Maclane spaceK(G,n) where G is an abelian group. Take the complex G[n] with G in the nth
component and zeroes elsewhere. ThenΓ(G[n]) is a simplicial abelian groupwith only nonzero
homotopy group πn(Γ(G[n])) ∼= G, so it is the simplicial version of K(G,n)! In particular,
taking its geometric realization will give K(G,n). In the case of G = Z, we get the extremely
simple Z̃[Sn] forK(Z, n). We have the following results.

Theorem 4.2. Let X be a simplical set and let B be an abelian group. Then there are canonical
isomorphisms

[X,K(B,n)] ∼= Hn(X,B)

for all n ≥ 0.

Some more work has to be done establishing the model structure of simplicial abelian
groups and the nature of the functorX 7→ ZX. For complete details, see [2], Theorem III.2.19.

We can also compute (co)homology through spectra. Given a spectrum E, define En(X) =
πn(E ∧X). Let (HZ)n = Z̃[Sn] be the Eilenberg-Maclane simplicial spectrum.

Theorem 4.3. There is a natural isomorphism

(HZ)n(X) ∼= H̃n(X).

Sketch (from Dundas’s notes [1]). First, ifM is a simplicial abelian group, then it follows from
Dold-Kan that π∗(|M |) = H∗(C∗(M)). So we have

H̃n(X) ∼= H̃n+k(S
k ∧X) = Hn+k(C∗Z̃[Sk ∧X]) ∼= πn+kZ̃[Sk ∧X].

On the other hand, we have

(HZ)n(X) = colimk πn+k((HZ ∧X)k) = colimk πn+k(Z̃[Sk] ∧X).

Now for k > n, there is an isomorphism

colimk πn+k(Z̃[Sk] ∧X) ∼= πn+k(Z̃[Sk ∧X]).

Modulo this last fact, which is apparently by a stability result, we have a proof.
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