
Cohen-Macaulay rings and schemes

Caleb Ji

Summer 2021

Several of my friends and I were traumatized by Cohen-Macaulay rings in our commuta-
tive algebra class. In particular, we did not understand the motivation for the definition, nor
what it implied geometrically. The purpose of this paper is to show that the Cohen-Macaulay
condition is indeed a fruitful notion in algebraic geometry. First we explain the basic defini-
tions from commutative algebra. Then we give various geometric interpretations of Cohen-
Macaulay rings. Finally we touch on some other areas where the Cohen-Macaulay condition
shows up: Serre duality and the Upper Bound Theorem.
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1 Definitions and first examples

We begin by listing some relevant foundational results (without commentary, but with a few
hints on proofs) of commutative algebra. Thenwe define depth and Cohen-Macaulay rings and
present some basic properties and examples. Most of this section and the next are based on
the exposition in [1].

1.1 Preliminary notions

Full details regarding the following standard facts can be found in most commutative algebra
textbooks, e.g.

Theorem 1.1 (Nakayama’s lemma). Let (A,m) be a local ring and letM be a finitely generated
A-module. IfM = mM , thenM = 0.

Hint. Induct on the number of generators ofM .
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Corollary 1.2. With the conditions above, if any lift of generators ofM/mM gives generators of
M .

Hint. Let x1, . . . , xn be the lifts toM and apply Nakayama’s lemma toM/(x1, . . . , xn)M .

Theorem 1.3 (prime avoidance). Let J ⊂ ∪ni=1Ii be ideals in a ring. If at most two of the Ii are
not prime, then J ⊂ Ii for some i.

Hint. Induct on n.

Definition 1.4 (associated primes). LetM be a finitely generatedA-module. Then p ∈ SpecA is
an associated prime ofM if it is the annihilator of an element ofM . The set of these associated
primes is denoted AssA(M).

Proposition 1.5. LetM be a finitely generated nonzero module over a Noetherian ring A. Then
(i) AssAM is finite and contains all primes minimal over AnnM .
(ii) The union of the p ∈ AssAM is the set of zerodivisors ofM .
(iii)

AssAS
MS = {p ∈ AssAM |p ∩ S = ∅}.

(iv) There is a finite filtration ofM :

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

such thatMi/Mi−1
∼= Api , where pi ∈ AssAM .

Hint. One first shows that the maximal elements in the set of annihilators of elements ofM
are prime ideals, and thus belong to AssAM . Then (ii) and (iv) follow easily from this, and
moreover we see that all associated primes appear in this way. If p is an associated prime of
M , then A/p ⊂ M , and localizing at S yields (iii). Finally, (i) follows from (iii) after localizing
at a given prime minimal over AnnM .

Theorem 1.6 (Krull’s height theorem). Let p ∈ SpecA be a prime ideal of a Noetherian ring A
that is minimal over an ideal generated by d elements. Then ht p ≤ d.

Hint. First consider the case of d = 1; this is known has Krull’s principal ideal theorem. For
this, if q ( p, show thatAq has dimension 0 by using constructing a chain of ‘symbolic powers’
which terminates because A/(f) is Artinian. Then induct for the full statement.

Definition 1.7 (system of parameters). Let (A,m) be a Noetherian local ring with Krull dimen-
sion d. A system of parameters forA is a set of elements x1, . . . , xd ∈ m such thatm is aminimal
prime over (x1, . . . , xd). A system of parameters exists, and moreover m =

√
(x1, . . . , xd).

Hint. By the height theorem, this cannot be done for less than d elements. Then the existence
follows from induction and prime avoidance.

Proposition 1.8. Let (A,m) be a Noetherian local ring. Then dimA ≤ dimk(m/m2).

Hint. By Nakayama’s lemma, a basis ofm/m2 lifts to generators ofm. Now apply Krull’s height
theorem.
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1.2 Depth and Cohen-Macaulay rings

Definition 1.9 (regular sequence). LetM be an A-module. Then (x1, . . . , xn) ∈ An is a regular
sequence onM , or simply anM-sequence, if each xi is not a zero-divisor ofM/(x1, . . . , xi−1)M
andM(x1, . . . , xn) 6= M .

Definition 1.10 (depth). Let I be an ideal of A andM a finitely generated A-module such that
IM 6= M . Then depth(I,M) is the length of the longest regular sequence onM contained in
I.

If (A,m) is a local ring, then we take the depth of A to be depth(m, A). Depth is a variant of
dimension which intuitivelymeasures from big to small. One way to compute depth is through
the Koszul complex.

Definition 1.11 (Koszul complex). Let x1, . . . , xn be elements of a ring A. LetK1
∼= An be a free

A-module and letKp = ∧pK1. Then the Koszul complexK(x1, . . . , xn) is given by

0→ A→ K1 → K2 → · · · → Kp → 0.

Here each differential is given by d(a) = (x1, . . . , xn) ∧ a.
We writeK(x1, . . . , xn)⊗M to denote the complex obtained by tensoring the Koszul com-

plex withM . The cohomology of this complex detects regular sequences.

Theorem 1.12. LetM be finitely generated over A. Then if

H i(K(x1, . . . , xn)⊗M) = 0 for i < r

and
Hr(K(x1, . . . , xn)⊗M) 6= 0,

then every maximalM-sequence in I = (x1, . . . , xn) has length r.

Proof. [1] Theorem 17.4.

As a consequence, all maximalM-sequences are of the same length.

We now define Cohen-Macaulay rings.

Definition 1.13. A local ring (A,m) is Cohen-Macaulay if depthA = dimA. A ring is Cohen-
Macaulay if its localization at all maximal ideals is Cohen-Macaulay.

In general, depth is less than dimension.

Proposition 1.14. Let I ⊂ A be an ideal. Then depth(I, A) ≤ ht I.

Hint. A nonzerodivisor is not contained in any minimal prime, so the result follows by induc-
tion.

In fact, it is equivalent to require localizations at all prime ideals to be Cohen-Macaulay
([1], Prop. 18.8).

2 Geometric properties

2.1 Complete intersections and smoothness

Asonemight expect, a Cohen-Macaulay scheme is onewhose local rings are all Cohen-Macaulay.
This gives geometric meaning to the examples we consider.

Proposition 2.1. A ring A is Cohen-Macaulay if and only if A[x] is Cohen-Macaulay.
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Hint. If A is Cohen-Macaulay, then one notes that every maximal ideal of A[x] is of the form
(m, f(x)), so the depth at each maximal ideal increases by 1. In the other direction, dividing
by a nonzerodivisor decreases both the dimension and depth by 1.

Using this argument, we see that dividing Cohen-Macaulay rings by the ideal generated by
a regular sequence preserves the C-M property. These are examples of complete intersections.

Example 2.2. k[x, y, z]/(x2, yz) is C-M. However, k[x, y]/(x2, xy) is not C-M: localizing at (x, y),
its dimension is 1 while its depth is 0.

Wewill now see that regular local rings areCohen-Macaulay, so smooth varieties areCohen-
Macaulay.

Proposition 2.3. Regular local rings are Cohen-Macaulay.

Hint. Let (A,m) be a regular local ring with x1, . . . , xn projecting to a basis of m/m2. Each
A/(x1, . . . , xi) is a regular local ring, and by a well-known result ([1], Cor. 10.14) regular local
rings are integral domains.

For example, we see that in the non-example k[x, y]/(x2, xy), at (0, 0) we have depth =
0,dim = 1, emb dim = 2. However, even though k[x]/(x2) is not smooth, it is Cohen-Macaulay.

2.2 Catenary and equidimensional rings

Recall that associated points are either generic points, which correspond to minimal primes,
or are embedded points. In our previous examples, (x) is the generic point and (x, y) is an
embedded point in Spec k[x, y]/(x2, xy), and (x) is the generic point in Spec k[x]/(x2). A key
property of local Cohen-Macaulay rings is that all associated primes are minimal. This follows
from the following proposition.

Proposition 2.4. LetM be a finitely generatedA-module. If I is an ideal ofA containingAnn(M),
then depth(I,M) ≤ the length of any maximal chain of prime ideals descending from a prime
containing I to an associated prime ofM .

Proof. [1], Prop. 18.2.

Proposition 2.5. Local Cohen-Macaulay rings have no embedded primes.

Hint. ChooseM = A in the previous proposition and use the fact that depthA = dimA.

We can go further with the following results. Recall that a ring A is called universally
catenary if every finitely generated A-algebra is catenary; i.e., all maximal chains between
two primes have the same length.

Proposition 2.6. Cohen-Macaulay rings are universally catenary.

Hint. Reduce to showing that local C-M rings are catenary, and use the previous proposition.

A ring is equidimensional if allmaximal ideals have the same codimension and allminimal
primes have the same dimension.

Proposition 2.7. Local Cohen-Macaulay rings are equidimensional.

Proof. From the proof of the previous proposition we in fact get that any two maximal chains
of prime ideals have the same length.

Geometrically, this means that a point of a Cohen-Macaulay scheme can’t be the intersec-
tion of two irreducible subschemes of different dimension.
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2.3 The unmixedness theorem and miracle flatness

Let I = (x1, . . . , xn) be an ideal with height n. Then by Krull’s height theorem, all minimal
primes of I have codimension I. We also have that A/I is Cohen-Macaulay. This leads to the
“unmixedness theorem."

Theorem 2.8 (unmixedness theorem). If A is Cohen-Macaulay, then with I as above every as-
sociated prime of A/I is minimal over I.

Thiswas essentially provenwhenwe showed that Cohen-Macaulay rings have no embedded
primes. This theorem can be used to show that a set of polynomials generates the coordinate
ring of a projective variety. Indeed, consider the following classical application.

Theorem 2.9 (Max Noether’s AF +BG theorem). Let f, g ∈ k[x, y, z] be homogeneous polyno-
mials meeting transversely. Then if h vanishes on the intersection, we have h ∈ (f, g).

Hint. The transverse condition means that (f, g) has height 2 (and the intersections are re-
duced points), so we can apply the unmixedness theorem. Let A = k[x, y, z]/(f, g); we have
that A has no embedded primes. The key point is that h is in the saturation of (f, g). This
implies that (x, y, z) is an associated prime of A, but if it were it would be embedded, contra-
diction.

Finally, the “miracle flatness" theorem (also known as Hironaka’s criterion) will be used in
the applications in the next section. We give the algebraic version, then the geometric version.

Theorem 2.10 (miracle flatness I). Suppose φ : (B, n) → (A,m) is a local homomorphism of
Noetherian local rings whereA is Cohen-Macaulay,B is regular, andA/nA = A⊗B B/n has pure
dimension dimA− dimB. Then φ is flat.

For example, if A is Cohen-Macaulay and finitely generated over some regular local ring B
contained in it, e.g. in the setting of Noether normalization, then it is free over B (flat over
local ring⇒ free).

Theorem 2.11 (miracle flatness II). Suppose π : X → Y is a morphism of equidimensional finite
type k-schemes, where X is Cohen-Macaulay, Y is regular, and the fibers of π have dimension
dimX − dimY . Then π is flat.

3 Other applications

Here we list two further applications of Cohen-Macaulay rings. Of course there are other appli-
cations, like local cohomology and intersection theory, but we do not discuss these. In general,
the Cohen-Macaulay condition allows results to be stated cleanly and simply, but of course the
general case is always worth studying.

3.1 Serre duality

LetX ⊂ PN be a projective scheme of dimension n and codimension r = N − n and let F be a
coherent sheaf onX. Define the dualizing sheaf

ω◦X = ExtrPN (OX , ωPN ).

As the notation suggests, the dualizing sheaf is the sheaf of differentials when X is smooth.
Also, as we will see in Vakil’s proof, this can be interpreted as an adjoint. The defining property
of the dualizing sheaf is the existence of a certain isomorphism

HomX(F , ω◦X) ∼= Hn(X,F)∨.
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This is essentially the degree 0 version of Serre duality, and is proven using the full version
of Serre duality for Pn. We now state Serre duality.

Theorem 3.1. Let X be a Cohen-Macaulay scheme of dimension n over an algebraically closed
field k. Then for 0 ≤ i ≤ n there are natural functorial isomorphisms

θi : Exti(F , ω◦X)→ Hn−i(X,F)∨,

where θ0 is the isomorphism referred to above.

We give a sketch of two proofs of this theorem, one from Hartshorne [2] and one from Vakil
[5]. These maps θi always exist, and the merit of Hartshorne’s proof is that it also shows that
if they are isomorphisms, thenX is Cohen-Macaulay.

Sketch of Hartshorne’s proof. 1. Prove Serre duality for Pn.

2. Prove the defining property of the dualizing sheaf, where i = 0.

3. Construct θi by showing Exti(−, ω◦X) is coeffaceable and thus universal.

4. The Cohen-Macaulay condition means that depthFx = n. By Auslander-Buchsbaum, we
have pdAFx = N − n, so ExtiPN (F ,−) = 0 for i > N − n. Using this, we show that
H i(X,F(−q)) = 0 for q >> 0.

5. Using this last result, Show Hn−i(X,−)∨ is coeffaceable too, and thus also universal.
Thus they are isomorphic to Exti(−, ω◦X).

Sketch of Vakil’s proof. 1. Prove the result for Pn.

2. Given π : X → Y and a quasicoherent sheaf on G on Y , we construct a right adjoint π! to
π∗, given by π!G = HomOY

(π∗OX ,G).

3. By miracle flatness, we have a finite flat map π : X → Pn. Set ωX = π!ωY .

4. Prove the case i = 0.

5. Prove the general statement by showing both sides are coeffaceable. Here we use the
condition that π is finite and flat to show that π∗OX is a vector bundle.

Finally, using general results on Ext sheaves we have that, if F is locally free, then we get

H i(X,F) ∼= Hn−i(X,F∨ ⊗ ω◦X)∨.

3.2 The Upper Bound Theorem (combinatorics!)

The Upper Bound Conjecture for spheres was proven by Stanley in [3] using Cohen-Macaualay
rings. For the story behind this, see [4].

Let ∆ be a simplicial complex on vertices {v1, . . . , vn}. The f-vector of ∆ is simply the
vector of the number of faces in each dimension. The h-vector of∆ can be defined as

h0 = 1, hd = (−1)d(1− f0 + f1 − · · ·+ (−1)d−1fd−1).

The question the Upper Bound Conjecture asks is: how large can the f-vector be if ∆ is a
convex polytope? The conjecture is that if ∆ is taken to be a cyclic polytope: the convex hull
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of n distinct points on the curve (x, x2, . . . , xd), then the maximum for each fi is reached. An
equivalent way to formulate this is by the inequalities

hi ≤
(
n− d+ i− 1

i

)
, (1)

where ∆ is the boundary complex of a d-dimensional simplicial convex polytope with n ver-
tices.

Actually, this version was proven by McMullen first, but this statement is generalizable
to spheres. Indeed, there are triangulations of spheres which could not be handled with Mc-
Mullen’s approach. Stanley filled this gap using Cohen-Macaulay rings.

Let A∆ be the coordinate ring

A∆ := K[v1, . . . , vn]/I,

where I consists of the squarefree monomials on the vi that do not comprise a face of ∆. We
can show that the generating function of the Hilbert function ofA, multiplied by (1−x)d, gives
precisely the h-vector h0 +h1x+ · · · . Now supposeA∆ is Cohen-Macaulay. Bymiracle flatness,
we can then show that the h-vector is an “O-sequence", a simple condition which implies that
the desired inequality (1) holds.

It remains to show that A∆ is Cohen-Macaulay where |∆| is a sphere. This follows from
a result of Reisner, who showed this condition is equivalent to a certain result regarding the
homology of various facets of ∆. This holds for spheres, and thus Stanley proved the Upper
Bound Conjecture for spheres.
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