
Complex Multiplication of Elliptic Curves

Caleb Ji

The theory of complex multiplication began with Kronecker’s Jugendtraum, which aimed
to construct abelian extensions of a number field through adjoining special values of special
functions. Apart from Q itself, this goal has only been fully achieved for imaginary quadratic
fields. This is done through constructing an elliptic curve with a given imaginary quadratic
field as its endomorphism ring and adjoining its j-invariant and torsion point coordinates.

The primary goal of this paper is to provide an expository account of the classical picture
just described. In Section 1 we state some relevant features of class field theory. In Section
2 we provide some background on elliptic curves. In Section 3 we prove the main theorems
of complex multiplication for elliptic curves, discuss examples, and mention an extension to
abelian varieties. Finally, in Section 4 we investigate the Hasse-Weil L-function of an elliptic
curve with complex multiplication and show how it can be expressed via Hecke L-functions.
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1 Background from class field theory

In this section, we begin by reviewing relevant key features of class field theory. First we give
the statements of class field theory, whichwill be used extensively throughout this paper. Then
we discuss the Hilbert class field and the Kronecker-Weber theorem, which set up the primary
goal of complex multiplication of elliptic curves.

1.1 Statements

Herewe give both the idelic and ideal-theoretic versions of class field theory. The idelic version
will be more useful when we discuss characters and the ideal-theoretic version will be more
useful in the determination of class fields.

Idelic class field theory

LetK be a number field and let IK denote the ideles ofK.

Theorem 1.1 (Artin reciprocity). There exists a global Artin map φK : IK → Gal(Kab/K) sat-
isfying the following properties.

(a) The global Artin map satisfies φK(K×) = 1.
(b) For every finite abelian extension L/K, φK induces an isomorphism

φL/K
∼=−→ IK/(K× ·Nm(IL))→ Gal(L/K).

Theorem 1.2 (existence theorem). Let CK = IK/K× be the idele class group. For every open
subgroup N ⊂ CK of finite index, there exists a unique finite abelian extension L/K such that
Nm(L/K) = N .

Ideal-theoretic class field theory

In this portion we mainly follow the presentation of [9].

Let K be a number field any let m = m0m∞ be a modulus of K. We let ImK denote the
fractional ideals ofK relatively prime tom. For any finite abelian Galois extension L/K where
L is unramified outside of the places dividing m, one defines the Artin map

ψm
L/K : ImK → Gal(L/K)

by p 7→ σp (the Frobenius element) and extending linearly.

Part of the ideal theoretic theorems states that the Artinmap ψm
L/K is always surjective. We

are therefore interested in the kernel. First, fixing m, we define

• the ray group of m: Rm
K := {(α)|νp(α) ≥ νp(m0), αv > 0 for v|m∞}

• the ray class group of m: ClmK := ImK/R
m
K

• the ray class field of m: K(m) is the unique finite abelian extension ofK, unramified at
all p - m, such that kerψm

L/K = Rm
K .

One of the statements of class field theory is that the ray class field of m does indeed exist
and is unique. Generally speaking, the kernel of ψm

L/K will not even contain the ray group R
m
K .

We call the subgroups of ImK which containR
m
K congruence subgroups. If the kernel ofψ

m
L/K is

a congruence subgroup, then we say thatL admits themodulusm. Note that this is equivalent
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to L being contained in the ray class fieldK(m).

As we are interested in all finite abelian extensions ofK, we would like to know if any given
oneL is contained in a ray class field – or equivalently, if it admits amodulus. Another theorem
of class field theory guarantees this to be the case. In fact, one can check that if L admits m1

and m1|m2, then L admits m2. This implies that there is a minimal modulus which L admits,
and we call it the conductor ofL, denoted c(L/K). We know a priori that the ramifying primes
ofK divide c(L/K), and it turns out that no other ones do. To summarize, c(L/K) is a modulus
divisible by precisely the primes ofK ramifying in L satisfying

L ⊆ K(m)⇔ c(L/K)|m.

Finally, another part of class field theory states that asL ranges over the abelian extensions
contained inK(m), then kerψm

L/K = Rm
K NmL/K(ImL ) and ranges over all congruence subgroups

of m.

Having made these explanations, we now state the theorems of class field theory in terms
of ideals.

Theorem 1.3 (Class field theory in terms of ideals). Let L be a finite abelian extension of K,
and let S be the set of primes of K ramifying in L. (a) (Artin reciprocity) The Artin map ψSL/K →
Gal(L/K) admits a modulus m divisible by precisely the primes in S, and defines an isomorphism

ISK/R
m
K NmL/K(ImL )

∼=−→ Gal(L/K).

(b) (completeness) If L admits a modulus m, then it admits every modulus divisible by m. Thus
it admits a minimal modulus, known as its conductor.

(c) (existence theorem) For every congruence subgroupH modulom, there exists a finite abelian
extension L/K such thatH = Rm

K NmL/K(ImL ).

1.2 The Hilbert class field

Historically, one of the primary goals of class field theory was to determine the Hilbert class
field of a number field, defined as follows.

Definition 1.4 (Hilbert class field). LetK be a number field. The Hilbert class field ofK is the
maximal unramified abelian extension ofK.

Remark. Unramified heremeans unramified not only at finite primes but also at infinite primes.
Concretely, this means that all extensions of real embeddings K ↪→ R ⊂ C to L ↪→ C remain
real.

Let H be the Hilbert class field of K. Then H is a number field which satisfies several
remarkable properties.

• Let Cl(K) be the class group ofK. Then Cl(K) ∼= Gal(H/K).

• The prime ideals p ∈ SpecK split in L are precisely the principal ones.

• Let I ⊂ OK be an ideal. Then IOH is principal.

Let us briefly recall how these statements are proved. Full details may be found in (e.g.)
[10].
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Sketch. • We apply the ideal-theoretic version of global class field theory to the modulus
m = 1. The corresponding ray class field is a finite abelian extension H ′/K unramified
everywhere, and the kernel of the Artin map is simply the congruence subgroup of prin-
cipal fractional ideals ofK. Then the Artin map induces an isomorphism between Cl(K)
and Gal(H ′/K). Furthermore, one shows through properties of the conductor that any
unramified abelian extension must be contained inH ′, so in factH ′ = H as desired.

• Note that p ∈ SpecK splitting completely inH is equivalent to the corresponding residue
field extensions being trivial. This is equivalent to the Frobenius element σp being trivial.
But in the case of the Hilbert class field, the kernel of the Artin map is precisely the
congruence subgroup of principal fractional ideals, as desired.

• Consider the extension of Hilbert class fieldsH1/H/K. Then settingG = Gal(H1/K), we
have Gal(H1/H) = [G,G] and Gal(H/K) = Gab. One shows through a group-theoretic
argument that the image of the Artin map applied to IOH is trivial inGal(H ′/H), which
as above implies that IOH is principal.

Example 1.5. If OK is a unique factorization domain, e.g. when K = Q, then the Hilbert class
field ofK isK itself.

Example 1.6. The Hilbert class field of Q(
√
−5) is Q(

√
−5, i).

In general, it is a difficult problem to explicitly compute the Hilbert class field of a given
number field. However, by viewing an imaginary quadratic field as the endormophism ring of
some elliptic curve, the theory of complex multiplication gives a construction for such fields.

1.3 The Kronecker-Weber Theorem

Understanding the maximal abelian extension of a number field may be thought of as the pri-
mary goal of class field theory. The first result in this direction is known as the Kronecker-
Weber theorem, which applies to the case ofK = Q.

Theorem 1.7. Every abelian extension of Q is contained in a cyclotomic extension.

One ought to expect the main theorems of global class field theory to imply this theorem
as a special case. This is indeed true.

Sketch. By global class field theory, every abelian extension K/Q admits a conductor m. This
means that K is contained in the ray class field of m. Over Q, every modulus divides some
modulus of the form (m)∞, which has ray class field Q(ζm). ThusK ⊂ Q(ζm), as desired.

One can consider the roots of unity as the values of the function e2πiz, evaluated at points
of finite order on S1. This paradigm of adjoining special functions evaluated at torsion points
will reappear in the construction of the maximal abelian extension of an imaginary quadratic
field.

2 Background on elliptic curves

In this section we recall some basic facts about elliptic curves and prove some basic facts about
elliptic curves with complex multiplication. We also cover some results on good reduction of
elliptic curves which will be needed for later proofs.

In all that follows, unless otherwise specifiedE is an elliptic curve overC,K is an imaginary
quadratic field, and OK is its ring of integers.
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2.1 j-invariant

First, we define the j-invariant using Weierstrass equations.

Definition 2.1. Let E be an elliptic curve with a Weierstrass equation

y2 = x3 +Ax+B.

Then the j-invariant of E is given by

jE = −1728
(4A)3

−16(4A3 + 27B2)
.

The significance of the j-invariant lies in the fact that two elliptic curves are isomorphic if
and only if they have the same j-invariant. For a proof, see [5], III.1.4. The rational coefficients
of this expression make it clear that for any σ ∈ Aut(C), we have σ(jE) = jσ(E).

Another perspective involves treating elliptic curves as SL2(Z) orbits on the upper-half
plane H. We recall that to make this identification, one fixes the origin O = [0 : 1 : 0] on E
and integrates the invariant differential along any paths from O to every point of E. This is
well-defined up to the periods of E, and thus identifies E with a lattice C/Λ. Normalizing this
lattice to be generated by 1, τ , we can ask about the j-invariant in terms of τ . It turns out that

j(τ) = 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
,

where g2(τ) and g3(τ) are the Eisenstein series defined by

g2(τ) = 60
∑

(m,n) 6=(0,0)

1

(m+ nτ)4
g3(τ) = 140

∑
(m,n)6=(0,0)

1

(m+ nτ)6
.

Using the expansions of the Eisenstein series, we can compute the j-function as a series in
terms of q = e2πiτ :

j(q) =
1

q
+ 744 + 196884q + 21493760q2 + · · · .

Furthermore, the curve
y2 = 4x3 − g2(τ)x− g3(τ)

recovers theWeierstrass form from g2(τ) and g3(τ). Formore details and proofs, see [6], chapter
1.

2.2 Complex multiplication

The term complexmultiplication refers to an elliptic curve having an endomorphism ring given
by a lattice in C, rather than just by Z.

Proposition 2.2. Let E be an elliptic curve. Then End(E) is congruent to either Z or an order in
an imaginary quadratic field.

Proof. We view E as a lattice C/Λ with Λ = 〈1, τ〉. Any endomorphism of E as a complex
manifold induces multiplication by some α on the tangent space at the origin. Because an
endomorphism ofEmust preserve the group structure, we easily deduce that it must in fact be
multiplication by α. We thus have α, ατ ∈ 〈1, τ〉. Writing α = a+bτ , this gives aτ+bτ2 ∈ 〈1, τ〉,
so τ is quadratic. Furthermore, τ must be imaginary. Then if Q(τ) = Q(

√
−d), we obtain that

End(E) = Z+nOQ(
√
−d) for some integern, which is indeed eitherZ or an order inQ(

√
−d).
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Remark. Notice that if End(E) = R, then there may be multiple isomorphisms f : R
∼=−→

End(E). When identifying the two, we naturally pick the unique one whereby (f(α))∗ω = αω,
where ω is the invariant differential of E.

Now fix an imaginary quadratic field K = Q[
√
−d] and let OK be its ring of integers. We

define

Ell(R) := {elliptic curves E/C|End(E) ∼= R}/isomorphism over C.

Remark. When E has complex multiplication, one can show (using the fact that j(E) is alge-
braic, Proposition 2.4) that we can replace isomorphism over C with isomorphism over Q.

While we may be interested in all elliptic curves with complex multiplication, it simplifies
things to consider only those whose endomorphism ring is in fact a ring of integers. This will
suffice to prove the classical theorems of complex multiplication.

We will now describe Ell(OK) in terms of the ideal class group ofK. First, note that given
any nonzero fractional ideal a ∈ OK , we can form the lattice aOk. The isomorphism class of
aOK clearly is the same up to scaling. Furthermore, the endomorphism ring of this lattice con-
sists of multiplication by αwhere αOK ⊂ α. Since a is a fractional ideal of a Dedekind domain,
we see that its corresponding endomorphism ring is OK .

More generally, if Λ is a lattice with endomorphism ringOK , we see that aΛ is one too. We
thus obtain an action ∗ of Cl(OK) on Ell(OK) defined by

a ∗ EΛ = Ea−1Λ. (1)

Proposition 2.3. The action (1) of Cl(OK) on Ell(OK) is simply transitive.

Proof. Because two elliptic curves are isomorphic if and only if their lattices are homothetic, it
follows that the action ofCl(OK) is free. To show transitivity, we must show that ifEΛ1 , EΛ2 ∈
Ell(OK), then we can find some fractional ideal a such that EaΛ1

∼= EΛ2 . We may assume
Λ1,Λ2 are of the form 〈1, τ〉, and thus themselves form fractional ideals a1, a2 ofK. Then taking
a = a2/a1 gives the desired result.

We end this section with an important property of the j-invariant of elliptic curves with
complex multiplication.

Proposition 2.4. Take E ∈ Ell(OK). Then j(E) ∈ Q.

Proof. We use the fact (noted at the beginning of Section 2.1) that for all σ ∈ Aut(C), we
have σ(j(E)) = j(σ(E)). Moreover, it is clear that σ(E) ∈ Ell(OK), and from the previous
proposition we have |Ell(OK)| = hK . Thus j(E) takes on finitely many values under the action
of Aut(C), which implies it must be an algebraic number.

In fact, this argument shows that [Q(j(E)) : Q] ≤ hK . In Section 3.1 we will show equality
and in Section 3.3 we will prove that j(E) is in fact an algebraic integer.

2.3 The action of the absolute Galois group

As the j-invariant is an analytic entity, some work must be done to give it the algebraic signif-
icance given by the Hilbert class field. We do this by showing the compatibility of the action of
the class group (which is analytic, in the sense that it is multiplication of a lattice by an ideal)
with the action of the absolute Galois group.
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Fix an elliptic curve E ∈ Ell(OK). We have both an action of Cl(OK) and an action of
Gal(K/K) onEll(OK), where the second action is given by the action on the coefficients of the
Weierstrass equations of the elliptic curves. Because the action of Cl(OK) is simply transitive,
we may define a map

F : Gal(K/K)→ Cl(OK)

prescribed by the equation
σ(E) = F (σ) ∗ E. (2)

Here, the ∗ action is given by (1). One checks immediaely that F is a homomorphism. Less
straightforward is the following proposition.

Proposition 2.5. The homomorphism F : Gal(K/K) → Cl(OK) given by (2) is independent of
the choice of E.

Proof. It suffices to show that for E/Q ∈ Ell(OK), a ∈ Cl(OK), and σ ∈ Gal(Q/Q), we have

σ(a ∗ E) = σ(a) ∗ σ(E).

To show this, we will use the fact that HomOK
(a,M) ∼= a−1M where M is a torsion-free

OK-module. Thus, to describe C/a−1Λ it suffices to describe Hom(a,C)/Hom(a,Λ). To do
this, we construct a free resolution of a:

OmK
A−→ OnK → a→ 0.

Now taking the OK-homomorphisms from these to the exact sequence of OK-modules

0→ Λ→ C→ E → 0,

we obtain the following commutative diagram.

0 0 0

0 a−1Λ C Hom(a, E)

0 Λn Cn En 0

0 Λm Cm Em 0

AT AT AT

The snake lemma gives an exact sequence

0→ A−1Λ→ C→ [kerAT : En → Em]→ Λm/ATΛn.

Because Λm/ATΛn is discrete and C/a−1Λ is connected, we get that C/a−1Λ is the identity
component of [kerAT : En → Em]. Note that AT : En → Em is a morphism of algebraic
varieties, and applying σ ∈ Gal(Q/Q) to the identity component of its kernel gives the identity
component of [kerσ(AT ) : (σ(E))n → (σ(E))m]. Thus

σ(a ∗ E) = C/a−1Λ = identity component of [kerσ(AT ) : (σ(E))n → (σ(E))m] = σ(a) ∗ σ(E),

as desired.
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2.4 Good reduction of elliptic curves

In this section, we consider elliptic curves E defined over a field K where char(K) may be
positive. We will define and state various results regarding good reduction, which will be used
in the proof that the j-invariant is an algebraic integer in Section 3.3.

Definition 2.6 (Tate module). Let E/K be an elliptic curve and let l ∈ Z be a prime. The l-adic
Tate module of E is the group

Tl(E) = lim←−
n

E[ln],

Where the maps E[ln+1]
·l−→ E[ln] are multiplication by l.

Remark. This definition generalizes word-for-word to abelian varieties.

We are interested in the case where l 6= char(K). In this case, it is not hard to see that
Tl(E) ∼= Zl × Zl as a Zl module. Because the action of Gal(K/K) on E[ln] commutes with
multiplication by l, we obtain an l-adic representation of dimension 2:

Gal(K/K)→ Aut(Tl(E)) ↪→ Aut(Tl(E))⊗Zl
Ql.

Wewill now define good and bad reduction and state the Neron-Ogg-Shafarevich criterion.
In the rest of this section, we change our notation.

• K is a local field complete with respect to a discrete valuation v.

• (A,m, k) is the corresponding local ring (where v(x) ≥ 0).

• π is a uniformizer of A with v(π) = 1.

A minimal Weierstrass equation for an elliptic curve E is one that minimizes v(∆) subject
to the condition that v(∆) ≥ 0. One can always find a minimal Weierstrass equation with
coefficients in R. Given such an equation, the reduction of E modulo m is the base change of
E by the morphism Spec k → SpecA, which of course just amounts to reducing coefficients
modulo m.

Definition 2.7 (good and bad reduction). LetE/K be an elliptic curve and let Ẽ be the reduction
modulo m of a minimal Weierstrass equation for E.

(a) E has good (or stable) redution if Ẽ is nonsingular.
(b) E has multiplicative (or semistable) reduction if Ẽ has a node.
(c) E has additive (or unstable) reduction if Ẽ has a cusp.

In cases (b) and (c), we also say thatE has bad reduction. IfK is instead a number field, we
can define these same notions of reduction at v by the embeddingK ↪→ Kv.

LetKunr be the maximal unramified extension ofK. Then we have an exact sequence

1→ Gal(K/Kunr)→ Gal(K/K)→ Gal(Kunr/K) ∼= Gal(k/k)→ 1.

We define the inertia subgroup

Iv := Gal(K/Kunr) ⊂ Gal(K/K).

IfGal(K)/K) acts on some set S, we say that S is unramified at v if the action of Iv on S is
trivial. We can now state the Neron-Ogg-Shafarevich criterion, which relates good reduction
to whether the Tate module is unramified.
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Theorem 2.8. [Neron-Ogg-Shafarevich criterion] Let E/K be an elliptic curve. Then the folloing
are equivalent.

(a) E has good reduction at v.
(b) E[m] is unramified at v for all integersm ≥ 1 that are relatively prime to char(k).
(c) The Tate module Tl(E) is unramified at v for all primes l 6= char(k).
(d)E[m] is unramified at v for infinitelymany integersm ≥ 1 that are relatively prime to char(k).

For a proof, see [5], Section VII.7.

Remark. This crietrion has been generalized to abelian varieties in the article [7] by Serre and
Tate.

Reduction type depends on the field over which E is defined. This motivates the following
definition.

Definition 2.9 (potential good reduction). We say that an elliptic curve E/K has potential good
reduction if there is a finite extensionK ′/K such that E has good reduction overK ′.

Remark. While we will not need it directly, we note that the semistable reduction theorem
states that an elliptic curve has either good or multiplicative reduction over some finite exten-
sion. Grothendieck generalized this statement to abelian varieties and Deligne and Mumford
generalized it to all curves.

Proposition 2.10. Let E/K be an elliptic curve. Then E has potential good reduction if and only
if its j-invariant is integral.

The proof of this proposition is a relatively straightforward computation and can be found
in [5] VII.5. Finally, we have the following corollary of Theorem 2.8.

Corollary 2.11. Let E/K be an elliptic curve. Then E has potential good reduction if and only if
the inertia group Iv acts on the Tate module Tl(E) through a finite quotient for some (all) prime(s)
l 6= char(k).

This corollary will be directly used in the proof that the j-invariant is an algebraic integer.
Its proof is also relatively straightforward and can be found in [5] VII.7.

3 The main theorems of complex multiplication

3.1 The j-invariant generates the Hilbert class field

The goal of this section is show that for any E ∈ Ell(OK), the Hilbert class field of K is given
byK(j(E)). We will assume the following proposition.

Proposition 3.1. There is a finite set of rational primes S ⊂ Z such that if p ∈ S is a prime which
splits inK, say as pOK = pp′, then

F (σp) = p ∈ Cl(OK).

For the proof, see Proposition 4.2 of [6]. It involves analyzing the structure of the isoge-
nies between E and p ∗E, reducing them modulo certain primes and using the fact that maps
between smooth curves in characteristic p can be factored as a Frobenius map followed by a
separable map.

Theorem 3.2. Take E ∈ Ell(OK). ThenK(j(E)) is the Hilbert class fieldH ofK.
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Proof. First we show thatK(j(E)) is the fixed field of kerF (defined in 2). Indeed,

kerF = {σ ∈ Gal(K/K)|F (σ) ∗ E = E}
= {σ ∈ Gal(K/K)|σ(E) = E}
= {σ ∈ Gal(K/K)|j(σ(E)) = j(E)}
= {σ ∈ Gal(K/K)|σ(j(E)) = j(E)}
= Gal(K/K(j(E)).

Moreover Gal(K/K(j(E)) is a normal subgroup of Gal(K/K), because if σ(j(E)) = j(E),
thenF (τστ−1)(E) = E ⇒ τστ−1(j(E)) = j(E). Therefore,F maps the quotientGal(K(j(E)/K)
injectively into Cl(OK), soK(j(E))/K is an abelian extension.

Nowwe show thatK(j(E))/K is unramified, or equivalently, that the conductor c(K(j(E))/K) =
1. For convenience, we will denote c(K(j(E))/K) by just c. We claim that the composition with
the Artin map

IcK
ψc
K(j(E))/K−−−−−−−→ Gal(K(j(E)/K)

F−→ Cl(OK)

is simply projection on the integral ideals a ∈ IcK . Indeed, from Proposition 3.1 and the Cheb-
otarev density theorem, there is some degree 1 p ∈ IcK in the same P (c) class as a which does
not lie over a prime in S. Then

F (ψc
K(j(E))/K(a)) = F (p) = p = a,

as desired. In particular, the image of all principal ideals of IcK are in the kernel of

F : Gal(K(j(E)/K)
F−→ Cl(OK),

which is itself injective. Thismeans that all principal ideals of IcK are in the kernel ofψ
c
K(j(E))/K .

But by class field theory, c is the smallest integral ideal where (α) is in the kernel of the Artin
map for all α ≡ 1 (mod c). This implies that c = 1.

Thus K(j(E))/K is unramified, so K(j(E)) ⊂ H. On the other hand, the composition
of F with the Artin map is surjective, so F : Gal(K(j(E)/K)

F−→ Cl(OK) is bijective. Since
[H : K] = |Cl(OK)|, it follows thatK(j(E)) = H as desired.

Recall that we showed in a previous section that [Q(j(E)) : Q] ≤ hK . This proof shows that
[K(j(E)) : K] = hK , so since [K(j) : Q(j)] ≤ 2, we get the equality [Q(j(E)) : Q] ≤ hK .
Remark. This proof in fact shows that as Ei ranges over all representatives of Ell(OK), then
j(Ei) gives a complete set ofGal(K/K)-conjugates of j(E). Moreover, the action of anynonzero
a ∈ IK on j(E) vis the Artin map is given by

ψ1
H/K(a)j(E) = j(a ∗ E).

3.2 Torsion points and the maximal abelian extension

The goal of this section is to compute the abelian extensions of an imaginary quadratic fieldK
by adjoining torsion points of someE ∈ Ell(OK). As we will see, adjoining them all along with
j(E)will give an abelian extension of the Hilbert class fieldH. The maximal abelian extension
is instead obtained by evaluating the torsion points on a Weber function, which essentially
gives their x-coordinates.

We begin with a preliminary result.

10
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Proposition 3.3. Take E ∈ Ell(OK) and let

L = K(j(E), Etors)

be the field generated by the j-invariant of E and the coordinates of all torsion points of E. Then
L is an abelian extension ofH = K(j(E)).

Proof. Let Lm = H(E[m]) ⊂ L be the field obtained by adjoining them-torsion points ofE for
some m. It suffices to show that Lm is an abelian extension of H. By the addition formula in
terms of theWeierstrass ℘-function, we see that automorphisms ofC/K act onE[m], and thus
Km is indeed a finite Galois extension ofK. Moreover, we immediately obtain an injection

ρ : Gal(Lm/H) ↪→ GL2(Z/mZ)

from the action on E[m].

Next, we claim that this action of Gal(Lm/H) commutes with the action of OK on E[m].
Indeed, take amodel ofE defined overH. Then it is not hard to show that every endomorphism
of E is defined over H (for complete details, see [6], Theorem 2.2.2). The claim follows from
applying this to the action ofOK . Thus the image of ρ lies in AutOK/mOK

(E[m]). But it is easy
to see that E[m] ∼= OK/mOK as OK/mOK-modules, so the image is abelian as desired.

Next, we determine the ray class fields ofK. First, we define the following Weber function
h : E → P1, where we pick some model y2 = x3 +Ax+B for E.

h(f(z)) =


x j(E) 6= 0, 1728,

x2 j(E) = 0,

x3 j(E) = 1728.

Remark. One may define a Weber function of an elliptic curve to be independent of the choice
of model in the following way. Fix an isomorphism f : C/Λ

∼=−→ E and define

h(f(z)) =



g2(Λ)g3(Λ)

∆(Λ)
℘(z,Λ) j(E) 6= 0, 1728,

g2(Λ)2

∆(Λ)
℘(z,Λ)2 j(E) = 0,

g3(Λ)

∆(Λ)
℘(z,Λ)3 j(E) = 1728.

As usual, g2 and g3 are Eisenstein series, ∆ = g2
2 − 27g3

3 is the discriminant, and ℘ is the
Weierstrass ℘-function.

Theorem 3.4. Let K be a quadratic imaginary field, take E ∈ Ell(OK), and let h be the Weber
function defined above. Let c be an integral ideal of OK . Then the field

K(j(E), h(E[c]))

is the ray class field ofK modulo c.

This theorem implies the following corollary, which is what we were after in the first place.

Corollary 3.5. We have
Kab = K(j(E), h(Etors)).

Moreover, for j(E) 6= 0, 1728, we have thatKab is generated overK by j(E) and the x-coordinates
of the torsion points of E.

11
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Indeed, this follows from the fact from class field theory that every abelian extension is
contained in a ray class field.

We will now give a rough idea of a proof of Theorem 3.4.

Idea of proof of Theorem 3.4. We would like to show that

ψL/K(p) = 1⇔ p ∈ Rc
K ;

it suffices to do so for all but finitely many primes inK which split completely. If we take such
a p ∈ Rc

K , then one can show that p = (π) for some π ∈ OK such that multiplication by π
and reducing (mod p) is equivalent to reducing first and taking the Frobenius. The fact that
p is principal implies that ψL/K(p) fixesH, and we use the commutative diagram described to
show that it fixes h(E[c]). This proves one direction, and the other direction follows a similar
paradigm.

3.3 Integrality of the j-invariant

We have already seen in Proposition 2.4 that j(E) is rational for curves with complex multi-
plication. In this section, we will prove that it is in fact an algebraic integer. As a particularly
nice consequence, eπ

√
163 is almost an integer, a fact we explain in Section 3.4.

There are three proofs of these in [6]: a complex analytic proof, an l-adic proof, and a p-adic
proof. Here we will present the l-adic proof, which may be generalized to abelian varieties. We
will deduce the result from the following theorem, whose proof is due to Serre and Tate.

Theorem 3.6. Let L be a number field and let E/L be a curve with complex multiplication. Then
E has potential good reduction at every prime of L.

Before discussing the proof, let us see how it implies the integrality of the j-invariant of a
CM elliptic curve.

Corollary 3.7. LetE/C be an elliptic curve with complex multiplication. Then j(E) is an algebraic
integer.

Proof. We showed in Proposition 2.4 that j(E) is an algebraic number. Take an equation for
E with coefficients in L = Q(j(E)). By Theorem 3.6, E has potential good reduction at every
prime of L. By Proposition 2.10, j(E) is integral at every prime of L, which implies that j(E) ∈
Z as desired.

We now give a proof of Theorem 3.6 that is a bit light on details; full details may be found
in [6], Theorem II.6.4.

Proof of Theorem 3.6. Wemay replace L with a finite extension and assume EndLv(E) is an or-
der of an imaginary quadratic field. Fix a prime v ∈ SpecOL and let Iv be the inertia subgroup
of Gal(Lv/Lv). Let p = char((OL)v/mv) and let l be a prime not equal to 2 or p. By Corollary
2.11, it suffices to show that the image of Iv in AutTl(E) (under the implied representation of
Gal(Lv/Lv) ) is finite.

By Proposition 3.3, the action ofGal(Lv/Lv) on Tl(E) is abelian, so the action of Iv factors
through Iab

v . By local class field theory, Iab
v
∼= (OL)∗v. Let (OL)∗v,1 be the group of 1-units;

that is, the subgroup of (OL)v with u ≡ 1 (mod mv). One can show (OL)∗v,1 is a pro-p group.
Furthermore, we get an exact sequence

1→ (OL)∗v,1 → Iab
v → ((OL)v/mv)

∗ → 1.

12
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On the other hand, choosing a basis for the Tate module gives an exact sequence

1→ GL2(Zl)1 → AutTl(E)→ GL2(Z/lZ)→ 1,

whereGL2(Zl)1 is the group of matrices congruent to the identity modulo l, and is pro-l group.
There are no non-trivial homomorphisms froma pro-p group to a pro-l group. This fact implies
that the representation

Iab
v → AutTl(E)

defines an embedding (OL)∗v,1 ↪→ GL2(Z/lZ). The residue field ((OL)v/mv)
∗ is also finite, so it

follows that the image of Iab
v in AutTl(E) is finite, as desired.

3.4 Examples and applications

Let us list some concrete illustrations of the theorems above. We begin with the following
observation.

Observation 3.8. eπ
√

163 = 262537412640768743.999999999999250072597 . . .

The fact that this number is almost an integer can be explained through the integrality of
the j-invariant. Set

K = Q[
√
−163],OK = Z

[
1 +
√
−163

2

]
.

Then OK is one of the nine imaginary quadratic fields with class number 1. Take the elliptic
curve E corresponding to the lattice 〈1, 1+

√
−163
2 〉. Recall that at the end of Section 3.1, we

showed that for E ∈ Ell(OK), we have [Q(j(E)) : Q] = hK . In this case, we therefore have
j(E) ∈ Q. Furthermore, the integrality of the j-invariant implies that j(E) ∈ Z.

Here, E corresponds to the value τ = 1+
√
−163
2 and we have q = e2πiτ = −e−π

√
163, which is

numerically very close to 0. Using the q-expansion for the j-invariant:

j(q) =
1

q
+ 744 + 196884q + 21493760q2 + · · · ,

the fact that j(q) is an integer implies that 1
q = −eπ

√
163 is almost an integer, as desired.

To compute the Weierstrass equation for this elliptic curve, one needs a computer (or to
be extremely adept at computation...). One finds ([6], Appendix 3) that a minimal Weierstrass
equation for the elliptic curve corresponding to the lattice 〈1, 1+

√
−163
2 〉 is

y2 + y = x3 − 2174420x+ 1234136692.

There are at least a few simple cases, however, which can be easily computed by hand.
For example, consider the elliptic curve EΛ corresponding to the lattice Λ = 〈1, i〉. As this
corresponds to the unique factorization domain Z[i], we expect its j-invariant to be an integer.
To calculate it, we not that the fact that iΛ = Λ implies that g3(τ) = g3(iτ) = i6g3(τ)⇒ g3(τ) =
0. Thus we have

j(τ) = 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
= 1728,

which is indeed an integer. Furthermore, a Weierstrass equation for EΛ is given by

y2 = 4x3 − g2(Λ)x,

and since we can scale A 7→ u2A,B 7→ u3B, we get isomorphic elliptic curves

y2 = x3 + x and y2 = x3 − nx2.

13
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Elliptic curves of the second kind are used to study the congruent number problem; for more
details see [4].

Similarly, one can begin with the lattice Λ = 〈1, 1+
√
−3

2 〉, corresponding to the unique fac-
torization domain Z[e2πi/3]. We get j(τ) = 0 and a Weierstrass equation y2 = 4x3 − g3(Λ),
which is isomorphic to (e.g.) the curve y2 = x3 + 1.

3.5 The main theorem of complex multiplication

While the previous theorems in this section may be regarded as the classical main theorems of
complex multiplication, there is another theorem that goes by the “main theorem of complex
multiplication." With some work, one can deduce the previous theorems from this one. More-
over, this statement may be generalized to abelian varieties. This was done by Shimura and
Taniyama in [8]. Here we will simply give the statement, both in the case of elliptic curves and
in the general case, and add some light commentary.

Elliptic curve case

As usual, let K/Q be an imaginary quadratic field with ring of integers OK and let E/C be an
elliptic curve with End(E) ∼= OK .

Theorem 3.9 (The main theorem of complex multiplication for elliptic curves). Take σ ∈
Aut(C) and let s ∈ IK be an idele satisfying φK(s) = σ|Kab ∈ Gal(Kab/K). Fix a complex
analytic isomorphism

f : C/a
∼=−→ E(C),

where a is a fractional ideal ofK. Then there exists a unique complex analytic isomorphism

f ′ : C/s−1a
∼=−→ σ(E(C)),

(depending of f and σ) so that the following diagram commutes.

K/a K/s−1a

E(C) σ(E(C))
σ

f

s−1

f ′

A proof may be found in [6], II.8.

Remark. As with previous results, this theorem can be extended to deal with elliptic curves
whose endormorphism ring is any order in an imaginary quadratic field.

The significance of this theorem lies in how it relates the analytic action of multiplication
by s−1 to the algebraic action of σ. This idea was present in the background of the proof that
j(E) generates the Hilbert class field, and this result can indeed be derived along the same
lines from this theorem. However, as far as the author knows, the other classical statements
would still require some substantial outside input to prove.

General case of abelian varieties

Theorem 3.10 (The main theorem of complex multiplication). Let (K,Φ) be a CM-type and
P = (A, ι, C) a polarized abelian variety of type (K,Φ, a, τ) with respect to an isomorphism ξ :

14
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Cn/u(a) → A. Fix σ ∈ Aut(C/K ′) and choose s ∈ IK such that σ|K ′ ab = [s,K ′]. Then there is a
unique complex analytic isomorphism

ξ′ : Cn/u(NΦ(s)−1a)→ σ(A)

satisfying the following properties.

1. σ(P) is of type (K,Φ, NΦ(s)−1a, N((s))τ) with respect to ξ′.

2. The following diagram commutes.

K/a K/NΦ(s)−1a

A σ(A)
σ

ξ◦u

NΦ(s)−1

ξ′◦u

While the structure of this theorem is similar to the case of elliptic curves, there are clearly
a lot of new notions involved. Also, the original work by Shimura and Taniyama is difficult
to read because it used the now-obsolete language of Weil’s Foundations. However, modern
expository accounts exist; for instance we refer the reader to [1].

4 The L-function of a CM elliptic curve

4.1 Hecke L-functions

L-functions are not necessarily strictly part of class field theory per se, but they are intimately
linked to the study of various topics of central importance in class field theory, such as the
distribution of primes. Moreover, they were historically essential to the proofs of class field
theory ([2]), and one can state an important part of Artin reciprocity as an equality between
certain Hecke L-functions and Artin L-functions. We begin by defining Hecke L-functions.

Definition 4.1 (Hecke character). Let K be a number field. A Hecke character (or Grössen-
character) is a continuous homomorphism

χ : IK/K× → C×

with image in the unit circle.

For some finite set of primes S containing the infinite primes, a Hecke character will be 1
on
∏
v 6∈S Uv. Given a Hecke character, we can naturally construct an L-function along the same

lines of Dirichlet L-functions.

Definition 4.2 (Hecke L-function). Let χ be a Hecke character. Define the corresponding Hecke
L-function by

LS(s, χ) =
∑

(a,S)=1

χ(a) Nm(a)−s =
∏
v 6∈S

1

1− χ(πv) Nm(pv)−s

where πv is an idele that is a uniformizer in the v-position and 1 elsewhere.

If we take S to be the primes ramified in K (along with the infinite primes), then we will
denote the resulting Hecke L-function by simply L(s, χ).

In general, L-functions coming from number theory are expected to admit some analytic
continuation and satisfy some functional equation. Hecke proved this using theta functions,
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and Tate’s thesis reproves these statements for Hecke L-functions essentially through Fourier
analysis on the adeles.

While Hecke L-functions can be viewed as ‘beginning’ from the Dirichlet series, one can
also arrive at L-functions by beginning with the Euler product. In this way we obtain Artin
L-functions.

Definition 4.3 (Artin L-function). Let ρ : Gal(L/K) → GLn(C) be an n-dimensional represen-
tation of Gal(L/K). Then we define

L(s, ρ) =
∏

p-∆L/K

1

det(In − ρ(σp) Nm(p)−s)
.

Artin’s conjecture is that the Artin L-finctions have an analytic continuation to the entire
complex plane. By Hecke’s result, this is true when an Artin L-function coincides with a Hecke
L-function. When ρ is a 1-dimensional representation, this occurs because of Artin reciprocity.
Indeed, the Artin map gives an isomorphism CK/Nm(CL)

∼=−→ Gal(L/K), so a character of
Gal(L/K) is given by a character of CK . All the terms in the two expressions match.

The generalization of this equality of L-functions comprises an important part of the Lang-
lands program. One on side, the Artin L-functions can be generalized to motivic L-functions,
which come from algebraic geometry, and on the other side, the Hecke L-functions can be
generalized to automorphic L-functions, which come from analysis. Obviously, this topic is
far outside of the scope of this paper.

4.2 The Hasse-Weil L-function of an elliptic curve

Let K be a number field and let E/K be an elliptic curve. We define the L-function of E by
piecing together local L-functions into an Euler product.

Take p ∈ SpecOK such that E has good reduction at p. Let the residue field OK/p be the
finite field Fq. We will define the local L-factor at p through the action of Frobenius on the
Tate module. Let l be a prime relatively prime to q and consider the map

φp,l : Tl(Ẽ)→ Tl(Ẽ)

defined by the q-th power Frobenius on Ẽ. We set the localL-factor at p to be the characteristic
polynomial of φp,l. Because Tl(Ẽ) ∼= Zl×Zl, this a degree two polynomial in Zl[T ]. In fact, one
can calculate it to be

Lp(E/K, T ) = det(1− φp,lT ) = 1− apT + qT 2,

where ap = q + 1−#Ẽ(Fq).

For the primes of bad reduction, we set

Lp(E/K, T ) =


1− T split multiplicative reduction at p,
1 + T non-split multiplicative reduction atp,
1 additive reduction atp.

Definition 4.4. The Hasse-Weil L-function of E/K is defined by the Euler product

L(E/K, s) =
∏

p∈SpecOK

Lp(E/K, q
−s)−1.

16



Caleb Ji Complex Multiplication of Elliptic Curves Spring 2021

The Hasse bound states that |ap| ≤ 2
√
q, and can be used to show that the Hasse-Weil

L-function converges and gives an analytic function for all s with <(s) > 3
2 . In fact, as a con-

sequence of the modularity theorem, we know that the Hasse-Weil L-function as an analytic
continuation to the entire complex plane and satisfies an expected functional equation relat-
ing its values at s and 2 − s. In the next section, we will sketch a proof of this fact for elliptic
curves with complex multiplication by interpreting their L-functions as products of Hecke L-
functions. As noted earlier, then Hecke’s result on the analytic continuation and functional
equation will apply to the Hasse-Weil L-functions.

4.3 The Hecke character associated to a CM elliptic curve

Take E/L ∈ Ell(OK). We will describe the construction of a Hecke character ψE/L : IL → C∗
satisfying the following property.

• IfK ⊂ L, then
L(E/L, s) = L(s, ψE/L)L(s, ψE/L).

• IfK 6⊂ L, then let L′ = LK. Then

L(E/L, s) = L(s, ψE/L′).

Note that here, L denotes the field of definition as well as the L-function!

The proof of the claim above can be found in [6], II.10. We now construct the desired Hecke
character attached to E/L as follows.

Let x ∈ IL be an idele and let s = NmL/K(x) ∈ IK . Then we claim there is a unique element
α ∈ K× with the following two properties:

• αOK = (s) ⊂ K.

• For any fractional ideal a ⊂ K and any analytic isomorphism

f : C/a→ E(C),

the following diagram commutes.

K/a K/a

E(Lab) σ(E(Lab))
φL(x)

f

αs−1

f

Remark. We recall that the fractional ideal of an idele s is defined as

(s) =
∏
p

pνp(sp).

The proof of this claim primarily uses the main theorem of complex multiplication (for
elliptic curves). The significance of this assignment αE/L : x 7→ α is that we have defined a
homomorphism IL → K× that encodes the action of x via Artin reciprocity on relevant points
of E. This is not a Hecke character, though, because we do not have αE/L(L×) = 1. We make
the following modification:

ψE/L : IL → C×, x 7→ αE/L(x) NmL/K(x−1)∞.

Then ψE/L is the desired Hecke character associated to E/L.
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