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@ Change to Polar Coodinates in a Double Integral If f is continuous on a
polar rectangle R givenby 0 <sa<sr<b,a <0 < B,where) < 8 — a < 2m,
then

J:[ fx.y) dA = LB J”bf(r cos 0, rsin ) r dr do
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EXAMPLE 1 Evaluate |[, (3x + 4y?) dA, where R is the region in the upper half-plane

bounded by the circles x> + y?> = 1 and x* + y* = 4.
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EXAMPLE 2 Evaluate the double integral
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EXAMPLE 3 Find the volume of the solid bounded by the plane z = 0 and the
paraboloid z = 1 — x> — y2.
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What we have done so far can be extended to the more complicated type of region
shown in Figure 8. It’s similar to the type II rectangular regions we considered in Sec-
tion 15.2. In fact, by combining Formula 2 in this section with Formula 15.2.4, we obtain
the following formula.

[3] If £ is continuous on a polar region of the form

. D={(rn0)|a<0<B, hOd)=<r=<h®)

then H flx,y)dA = “B “/h::?f (rcos @, rsin 0) rdrdf
Ali) JaJ ,l

FIGURE 8
D={(r,0)|a= 0=, hi(0)<r=h(0)}
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50. (a) We define the improper integral (over the entire plane R?)

I= ﬂ =) gA
s
= f_ﬁ f_ (2 +y?) dy dx

= lim Jj e @) ga

a—>w

Da

where D, is the disk with radius a and center the origin.

Show that
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(b) An equivalent definition of the improper integral in
part (a) is

[ aa= tm e

R2 Sa

%) ga

where S, is the square with vertices (*a, *=a). Use this t
show that

r e dx Jx ei"zdy =1
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(¢) Deduce that

fx e dx = \/;
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(d) By making the change of variable r = / 2 x, show that

Jic ey = L2

(This is a fundamental result for probability and
statistics.)
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De Buitians: If we now add these quantities and take the limit as the number of subrectangles becomes

large, we obtain the moment of the entire lamina about the x-axis:

m n

[3] M= lim > 3 y§p(x¥, y5) AA = || yp(x,y) dA
o

mn—® i)

Similarly, the moment about the y-axis is

(4] M,= lim > > x}pk},yi)AA = H xp(x,y) dA
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As before, we define the center of mass (x, y) so that mx = M, and my = M,. The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center

of mass. Thus the lamina balances horizontally when supported at its center of mass (see
Figure 4).

[5] The coordinates (x, ) of the center of mass of a lamina occupying the
region D and having density function p(x, y) are

M, |

P =;£J‘xp<x,y>dA §=":1‘“=ﬂfyp(x,y)dfx

where the mass m is given by
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of Inertia

B Moment of Inertia

The moment of inertia (also called the second moment) of a particle of mass m about
an axis is defined to be mr?, where r is the distance from the particle to the axis. We
extend this concept to a lamina with density function p(x, y) and occupying a region D
by proceeding as we did for ordinary moments. We divide D into small rectangles,
approximate the moment of inertia of each subrectangle about the x-axis, and take the
limit of the sum as the number of subrectangles becomes large. The result is the moment
of inertia of the lamina about the x-axis:

(6] L= lim 3 3 (v pxf, yi) AA = || y’p(x, ) dA
m,n—x ;) j=1 ~D~
Similarly, the moment of inertia about the y-axis is
I,= lim 2 (x¥)p(x¥, y¥)AA = H x*p(x,y) dA
m,n—%* ;_, j=1 'I)'
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SECTION 15.4 Applications of Double Integrals 1073

We also consider the moment of inertia about the origin, also called the polar moment
of inertia:

m n

o= lim 3 3 [ + 08P] e v A4 = [[ (2 + ) p(x, y) da
n

MRy i)

Note that I, = I, + I,.



‘ prokaéi(ffx)/

La’(
of

>< lff G (entinuous ran péﬂm :/arfal/cl {'Z\, f"éaé;/"y Dé"‘sl‘f'}/ 74,“.”,‘}7,1
X 5 a outinugul fhb.cz‘,“q\n j: R — ){?20 , St

jw‘f'(x)ix= \
Plasx<i) =féf(x)o/x

Now e c«;m.':,(u a [’a}f ot ontinuaus andom variobles X & Y,

@v\ ertQn ”

at random. The joint density function of X and Y is a function f of two variables such
that the probability that (X, Y) lies in a region D is

P((X. ¥) € D) = [[ f(x,y) da

In particular, if the region is a rectangle, then the probability that X lies between a and b
and Y lies between ¢ and d is

PasX<b csY=<d)= "b “‘df(x, y) dy dx

gmri)ux >< hes /JWL&L;/"'t)/ OZLM:H?/ 744%"5'1:7'-\ ],(,
\{ Aas /)wLaL;'/ffy 0&:\??*7/ 74“6'{91”"‘ 7(

WAA‘f {Z\L Hla'ﬁ‘ﬂn of ][; 4 ][4 Gn/ 14/11/.,' J‘o,.nt :[u\);?/ JQ‘\&_“.N f 2

‘fl« refetion s cs}zht{a(}/ fL n (et on of flw)c twy veriebles X & I8
Sonn (a5 \( =2X thew

500 = 28 (2w
b caun JLfL(mw A =yj:f‘,(x) d<

1f M' (MLL;LL Con bt wrmwx A%

Ty Heodi
£, X &Y Wes ne relq-bfor\.s AN (B



EYChFlLI {/\/m"ﬁl.lﬂd + 1 hu W,M

In Section 8.5 we modeled waiting times by using exponential density functions

f(t)={0 if t<0

pwle* if t=0

where u is the mean waiting time. In the next example we consider a situation with two
independent waiting times.
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EXAMPLE 7 The manager of a movie theater determines that the average time
moviegoers wait in line to buy a ticket for a film is 10 minutes and the average time
they wait to buy popcorn is 5 minutes. Assuming that the waiting times are indepen-
dent, find the probability that a moviegoer waits a total of less than 20 minutes before
taking his or her seat.

SOLUTION Assuming that both the waiting time X for the ticket purchase and the
waiting time Y in the refreshment line are modeled by exponential probability density
functions, we can write the individual density functions as

o if x<0 _Jo ify<O
ﬁ(x)_{%e,\‘/l(l iF =0 fz()’)_{%e,-/s if y=0

Since X and Y are independent, the joint density function is the product:

1 _-x/10 —y/5
e e if x=0,y=0
Fey) = i f(y) = {50 ¢

0 otherwise

We are asked for the probability that X + ¥ < 20:
PX +Y<20)=P(X,Y) €D)

where D is the triangular region shown in Figure 8. Thus

P(X + Y <20) = [[f(x.y)dA = ‘( L o=1/105/5 gy i
) :

20 "2()*.\' 1
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y=20—x

20 _ r20 .
— % ‘0 [e .\/10(_5)6 _\/5]-‘:0 dx = % ‘0 e .\/10(1 — e 20)/5)dx

(20 ) :
— % (e_"/”’ _ e_4e“/”))dx =14+ e?%—2e2=0.7476
JO

This means that about 75% of the moviegoers wait less than 20 minutes before taking
their seats. |
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In the next example we deal with normal distributions. As in Section 8.5, a single
random variable is normally distributed if its probability density function is of the form
1

e—(.\'—uiz/(z.’r:)
o2

flx) =

where w is the mean and o is the standard deviation.

EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally
distributed with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are
normally distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that
X and Y are independent, write the joint density function and graph it. Find the proba-
bility that a bearing randomly chosen from the production line has either length or
diameter that differs from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y are normally distributed with u, = 4.0,
p2 = 6.0, and oy = 0, = 0.01. So the individual density functions for X and Y are

1 1

ﬁ(x) . —_e“(-\'—4)3/0.0002 fz(y) S — e—(y—ﬁ)l/o.()ooz
0.01/27

0.01/27

Since X and Y are independent, the joint density function is the product:

1
_ _ —(x—4)2/0.0002 , —(y—6)2/0.0002
f(x,y) = filx)fa(y) T e

~5000[(x—4)2+(y—6)2]

5000
-———g
T

A graph of this function is shown in Figure 9.
Let’s first calculate the probability that both X and Y differ from their means by less
than 0.02 cm. Using a calculator or computer to estimate the integral, we have

flx,y) dydx

P(3.98 < X < 4.02,5.98 < Y < 6.02) = J’“’Z J‘“-"z

398 J5.98

_ 5000 "4.()2 Jos.()z 8_5000[(“,_4)14_(),_6)3] dy dx

T J398 J598

= (0.91

Then the probability that either X or Y differs from its mean by more than 0.02 cm is

approximately
1 —-091=0.09 H
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Recall from Section 8.5 that if X is a random variable with probability density function
£, then its mean is

r= EC xf(x) dx

v
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SECTION 15.4 Applications of Double Integrals 1077

Now if X and Y are random variables with joint density function f, we define the X-mean
and Y-mean, also called the expected values of X and Y, to be

i) w= [ ey da = [y da
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15. The boundary of a lamina consists of the semicircles
y=4/1 — x> and y = /4 — x? together with the portions
of the x-axis that join them. Find the center of mass of
the lamina if the density at any point is proportional to its
distance from the origin.

16. Find the center of mass of the lamina in Exercise 15 if the
density at any point is inversely proportional to its distance
from the origin.
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30. (a) Verify that

4xy if 0s=sx=<1,0=sy=<1
0 otherwise

flx,y) = {

is a joint density function.
(b) If X and Y are random variables whose joint density
function is the function f in part (a), find

(i) P(X =1) i) Px =1 vy<1i)
(c) Find the expected values of X and Y.
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