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1. Introduction.

Let M be a monomial ideal in the polynomial ring S = k[x1, . . . , xn] over a field k. We are
interested in the problem, first posed by Kaplansky in the early 1960’s, of finding a minimal
free resolution of S/M over S. The difficulty of this problem is reflected in the fact that
the homology of arbitrary simplicial complexes can be encoded (via the Stanley-Reisner
correspondence [BH,Ho,St]) into the multigraded Betti numbers of S/M . In particular, the
minimal free resolution may depend on the characteristic of k.

We introduce a method for resolving S/M by encoding the entire resolution into a single
simplicial complex (Construction 2.1). This method is different from the way simplicial
complexes are used in the Stanley-Reisner correspondence to compute Betti numbers.

One of the central ideas in this paper is that there exists a genericity condition, which
ensures simply structured homological behavior. The same idea is developed further for toric
varieties in [PS]. We call a monomial ideal M generic if no variable xi appears with the same
nonzero exponent in two distinct minimal generators of M . Almost all monomial ideals are
generic, in the sense that those which fail to be generic lie on finitely many hyperplanes in
the matrix space of exponents. We prove that the minimal free resolution for any generic
monomial ideal M comes (in the sense of Construction 2.1) from a simplicial complex ∆M ,
which we call the Scarf complex of M . If M is Artinian, then the Scarf complex is a regular
triangulation of a simplex (Corollary 5.5). In general it need not be pure (Example 3.4), and
it need not be shellable (Example 5.2), but it is always contractible (Theorem 5.1). We also
relate the Scarf complex to the irreducible decomposition of M and to the Cohen-Macaulay
property (Theorem 3.7 and Corollary 3.9).

In the literature we found only two general constructions for resolving arbitrary mono-
mial ideals: Taylor’s resolution (cf. [Ei, 17.11]) and Lyubeznik’s subcomplex (see [Ly]).
For a large number of generators these resolutions are very far from minimal and inefficient
for applications. In Section 4 we obtain a nonminimal free resolution which comes from
Construction 2.1 and has length at most the number of variables, so it is much smaller
than Taylor’s. Our construction is based on deformation of exponents: we deform M to a
nearby generic monomial ideal M ′ by using monomials with real exponents, we compute
the Scarf complex ∆M ′ of the generic ideal M ′, and then we label the vertices of ∆M ′ with
the generators of the original ideal M . This defines a nonminimal resolution for S/M .

In Section 5 we show that, for generic M , the Scarf complex ∆M appears naturally in
the boundary of a certain polytope PM . As an application, in Section 6 we show that the
Betti numbers of an arbitrary monomial ideal satisfy the inequalities of the Upper Bound
Theorem for Convex Polytopes. Even sharper bounds can be derived by relating the Scarf
complex ∆M to the concept of order dimension for partially ordered sets (Theorem 6.4).
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2. Taylor complexes.

Let M = 〈m1, . . . , mr〉 be a monomial ideal in S = k[x1, . . . , xn]. For each subset I of
{1, . . . , r} we set mI := lcm(mi | i ∈ I). Let aI ∈ Nn be the exponent vector of mI and let
S(−aI) be the free S-module with one generator in multidegree aI . The Taylor resolution of
S/M is the Zn-graded module F =

⊕
I⊆{1,...,r}S(−aI) with basis denoted by {eI}I⊆{1,...,r}

and equipped with the differential

d(eI) =
∑

i∈I
sign(i, I) · mI

mI\i
· eI\i , (2.1)

where sign(i, I) is (−1)j+1 if i is the jth element in the ordering of I. This is a free
resolution of S/M over S having length r and 2r terms. It is very far from minimal if
r 	 n. A smaller resolution based on Taylor’s resolution was constructed in [Ly].

Every simplicial complex ∆ on {1, . . . , r} defines a submodule F∆ :=
⊕

I∈∆S(−aI)
of the Taylor resolution F which is closed under the differential (2.1). This Nn-graded
complex of free S-modules is described in more detail in the next construction.

Construction 2.1. (Monomial resolution from a labeled simplicial complex)

Let ∆ be a simplicial complex whose vertices are labeled by the generators of M . We label
each face of ∆ by the least common multiple of its vertices. The exponent vectors of these
monomials define an Nn-grading of ∆. Let F∆ be the Nn-graded chain complex of ∆
over S. It is obtained from the simplicial chain complex by homogenizing the differential.
For example, if m1 = x3y4 and m2 = xz3 form an edge, then its boundary is d(e12) =
z3e1 − x2y4e2. If the complex F∆ is exact then we call it the resolution defined by the
labeled simplicial complex ∆. Such a resolution is characteristic-free and an associative
commutative differential graded algebra. In this case the Nn-graded Hilbert series of S/M

equals the Nn-graded Euler characteristic of ∆ divided by (1− x1) · · · (1− xn).

We use reduced simplicial homology to determine when F∆ is exact.

Lemma 2.2. The complex F∆ is exact if and only if for every monomial m the simplicial

complex ∆[m] = {I ∈ ∆ |mI divides m} is empty or acyclic over k.

Proof: Since F∆ is Nn-graded it suffices to check exactness in each multidegree. The
component of F∆ in multidegree m is a complex of finite-dimensional k-vector spaces,
which can be identified with the chain complex of ∆[m] over k.

Remark 2.3. Lemma 2.2 shows that Taylor’s complex F is exact. In this case ∆ is a full
(r−1)-simplex and ∆[m] is the subsimplex on the minimal generators which divide m.

3. Generic monomial ideals.

For any monomial ideal M = 〈m1, . . . , mr〉 we define a simplicial complex:

∆M :=
{

I ⊆ {1, . . . , r} | mI �= mJ for all J ⊆ {1, . . . , r} other than I
}

(3.1)
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In Section 5 we will show that ∆M equals a complex introduced by Herbert Scarf in the
context of mathematical economics (see [Sc, §2.8]). We call ∆M the Scarf complex of M .

Taylor’s resolution F is a direct sum of the minimal free resolution of S/M and trivial
complexes 0 −→ S(−aI) −→ S(−aI) −→ 0. On the other hand, if I ∈ ∆M then F has
a unique minimal generator in multidegree aI . Therefore, the minimal free resolution of
S/M always contains the complex F∆M

, but is larger in general. More precisely, for every
monomial ideal M and every face I of ∆M , the minimal free resolution of S/M has a unique
generator in multidegree aI and the differential acts on these generators as in (2.1).

Lemma 3.1. If all nonzero Betti numbers of S/M are concentrated in the multidegrees aI

of the faces I of ∆M , then F∆M
is the minimal free resolution of S/M .

Proof: If the minimal free resolution of S/M is strictly larger than F∆M
, then the Tay-

lor resolution has at least two basis elements in some multidegree aI for I ∈ ∆M . This
contradicts the definition of ∆M .

Theorem 3.2. Let M be a generic monomial ideal. Then the complex F∆M
defined by

the Scarf complex ∆M is the minimal free resolution of S/M over S.

Proof: If I ∈ ∆M and i ∈ I then mI\i properly divides mI . Thus we see directly from (2.1)
that F∆M

is minimal. It remains to show that F∆M
is exact. We will apply Lemma 3.1.

Consider any multidegree aI with I �∈ ∆M . The jth Betti number in multidegree aI equals
the k-dimension of the homology of the Koszul complex at Kj := ∧j(S/M)n in degree aI .
The component of Kj in degree aI is contained in the S/M -module

mI

supp(mI)
Kj , where

supp(mI) is the maximal square-free monomial dividing mI . To prove that this component
is zero, it suffices to show that

mI

supp(mI)
is zero in S/M . Choosing I minimal with respect

to inclusion, we may assume mI = mI∪i for some i ∈ {1, . . . , r}\I. The monomials mi

and mI have different exponents in any fixed variable because M is generic. So mi divides
mI

supp(mI)
, and we are done.

Corollary 3.3. Let M be a generic monomial ideal.

(1) The number of j-faces of the Scarf complex ∆M equals the total Betti number

βj+1(S/M) = dimk TorS
j+1(S/M, k).

(2) The minimal free resolution of S/M is characteristic free. It is Nn-graded and in each

multidegree the Betti number is either 0 or 1.

(3) The Nn-graded Hilbert series of S/M (i.e. the sum of all monomials not in M) is

∑
I∈∆M

(−1)|I| ·mI

(1− x1) · · · (1− xn)
,

and there are no cancellations in the alternating sum in the numerator.

The multigraded Betti numbers of any monomial ideal determine its Hilbert series, but
not conversely. For a generic monomial ideal, by Corollary 3.3, the multigraded Hilbert
series determines the multigraded Betti numbers, and, by Theorem 3.2, they determine the
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Scarf complex and the minimal free resolution. Thus for a generic monomial ideal, the
multigraded Hilbert series determines the minimal free resolution; in particular, these two
are computationally equivalent. We next illustrate our results for a small example.

Example 3.4. Let n = 3, r = 4 and consider the generic monomial ideal M =
〈x2z3, x3z2, xyz, y2 〉. The Scarf complex ∆M is a triangle connected to an edge:

The triangle is labeled by x3yz3, the edges of the triangle are labeled by x3z3, x2yz3, x3yz2,
and the other edge by xy2z. The minimal free resolution of S/M is the N3-graded chain
complex of the simplicial complex depicted above:

0 → S




y

−x

z

0




−−−−−→S4



−x −y 0 0
z 0 −y 0
0 xz2 x2z −y

0 0 0 xz




−−−−−−−−−−−−−−−→S4

[
x2z3 x3z2 xyz y2

]
−−−−−−−−−−−−−−−−→S → S/M → 0.

The Hilbert series of S/M equals

∑
{xaybzc : xaybzc �∈ M } =

P (x, y, z)
(1− x)(1− y)(1− z)

, where

P (x, y, z) = 1− x2z3 − x3z2 − xyz − y2 + x3z3 + x2yz3 + x3yz2 + xy2z − x3yz3.

This polynomial is the N3-graded Euler characteristic of the Scarf complex.

A resolution F of a cyclic module S/L is a DG-algebra if it admits an associative,
graded (by homological degree), skew commutative product ∗ satisfying the Leibnitz rule
d(α ∗ β) = d(α) ∗ β + (−1)deg(α)α ∗ d(β). The prototypical example of a DG-algebra is
a Koszul complex, with product given by exterior multiplication. See [Ku] for motivation
and further examples, where quotient DG-algebras are also considered. The minimal free
resolution of a monomial ideal need not be a DG-algebra:

Example 3.5. (Avramov, Backelin) There is no DG-algebra structure on the minimal free
resolution of S/〈x2, xy2z, y2z2, yz2w, w2〉. This is proved in [Av, 5.2.3].
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On the other hand, the Taylor resolution of a monomial ideal is always a DG-algebra,
and Theorem 3.2 has the following corollary:

Corollary 3.6. If M is a generic monomial ideal, then the minimal free resolution of S/M

is a quotient DG-algebra of the Taylor resolution.

Proof: We prove that any complex F∆ given by Construction 2.1 is a quotient DG-
algebra of the Taylor resolution. The Taylor resolution F can be understood as a divided
Koszul complex, and a product modeled after exterior multiplication gives it a DG-algebra
structure: Define

eI ∗ eJ :=




sign(I, J) · mImJ

mI∪J
· eI∪J if I ∩ J = ∅,

0 otherwise.

Here, if I = {i1 <. . .<iq} and J = {j1 <. . .<jp}, then sign(I, J) is the sign of the permuta-
tion which makes i1, . . . , iq, j1, . . . , jp an increasing sequence. This product is multigraded,
and like exterior multiplication it is associative, skew commutative, and satisfies Leibniz’s
rule. For a simplicial complex ∆ the kernel of the map F → F∆ is a DG-ideal of F , so F∆

is a quotient DG-algebra of F .

In the rest of this section we describe the irreducible decomposition of a generic mono-
mial ideal M , that is, the unique minimal expression of M as an intersection of ideals of
the form 〈xd1

i1
, xd2

i2
, . . . , x

dj

ij
〉. Choose an integer D larger than the degree of any minimal

generator of M . We replace M by the Artinian ideal

M∗ := M + 〈xD
1 , xD

2 , . . . , xD
n 〉.

Let ∆M∗ be the Scarf complex of M∗. This is a simplicial complex on {1, 2, . . . , r, r +
1, . . . , r+n}, where the index r+i is associated with the generator xD

i . By Corollary 5.5
below, ∆M∗ pure (n−1)-dimensional. For each facet I of ∆M∗ we form the irreducible ideal

MI := 〈 xps
s : ps = degxs(mI) and ps < D 〉.

Note that MI is independent of the choice of D and may have less than n generators.

Theorem 3.7. A generic monomial ideal M is the intersection of the irreducible ideals MI ,

where I runs over all facets of the Scarf complex ∆M∗ . This intersection is irredundant.

Proof: We first show that M is contained in MI for every facet I of ∆M∗ . Let mj be
any minimal generator of M . If j ∈ I then there exists a variable xs with degxs

(mI) =
degxs

(mj) < D. This implies mj ∈ MI . If j �∈ I then there is a variable xs with
degxs

(mI) < degxs
(mj) < D, which implies mj ∈ MI as well.

For the reverse inclusion
⋂

I MI ⊆ M , we shall prove that every monomial m, which
is not in M is not in MI for some facet I of ∆M∗ . Let m �∈ M . We choose a D 	 0 so that
m �∈ M∗. Next we select a monomial m̃ such that m · m̃ �∈ M∗ but xi ·m · m̃ ∈ M∗ for i =
1, 2, . . . , n. There exist unique (and necessarily distinct) minimal generators mj1 , . . . , mjn
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of M∗ with the property that mji
divides xi ·m · m̃. Setting I := {j1, . . . , jn}, we have

x1x2 · · ·xn ·m · m̃ = mI . This implies m �∈ MI .
Finally, we must show that the intersection ∩MI over all facets I of ∆M∗ is irredundant.

Fix a facet I and consider the monomial m := mI/(x1x2 · · ·xn). Clearly, m �∈ MI . It
suffices to show that m ∈ MJ for all other facets J of ∆M∗ . Fix another facet J . There
exists an index i ∈ I\J and a variable xs such that degxs

(mI) ≥ degxs
(mi) > degxs

(mJ).
This implies D ≥ degxs

(mI) > degxs
(m) ≥ degxs

(mJ) and therefore m ∈ MJ .

Example 3.8. The seven irreducible components of the generic monomial ideal

〈xy2z3, x3yz2, x2y3z 〉 = 〈x〉 ∩ 〈y〉 ∩ 〈z〉 ∩ 〈x3, y2〉 ∩ 〈y3, z2〉 ∩ 〈z3, x2〉 ∩ 〈x3, y3, z3〉

correspond to the seven triangles in the Scarf complex of the Artinian ideal 〈x4, y4, z4,

xy2z3, x3yz2, x2y3z 〉. This Scarf complex is depicted in Example 5.6.

Corollary 3.9. Let M be a generic monomial ideal and M = ∩I∈∆M∗ MI its irreducible

irredundant decomposition. Then

depth(S/M) = minI∈∆M∗

{
dim(MI)

}
.

In particular, M is Cohen-Macaulay if and only if it is pure-dimensional.

Proof: Each facet I of ∆M∗ defines a component MI with

dim(MI) = | I ∩ {r + 1, . . . , r + n} |.

To compute the depth of S/M we consider the Scarf complex ∆M . Note that ∆M is a
subcomplex of ∆M∗ which may have dimension less than n − 1 and is generally not pure.
The depth of S/M equals the minimum of the numbers n−|J | where J runs over all facets
of ∆M . Every facet J of ∆M extends to a facet I of ∆M∗ , and, conversely, if I is a facet of
∆M∗ then I ∩ {1, . . . , n} is a face of ∆M . Therefore

depth(S/M) = min

{
| I ∩ {r + 1, . . . , r + n} | : I facet of ∆M∗

}
.

The ideal M being pure-dimensional means that all irreducible components MI have the
same dimension. So M is pure-dimensional if and only if dim(M) = depth(S/M).

4. Deformation of exponents.

Let M = 〈m1, . . . , mr〉 be an arbitrary monomial ideal; say, M is not generic. In this section
we construct a (typically nonminimal) free resolution of S/M by deforming the exponent
vectors of the generators of M . This approach has the following advantages:
• The resolution by deformation of exponents has length at most the number of variables;

thus in general it is much smaller and shorter than Taylor’s resolution.
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• This resolution is a DG-algebra (by the proof of Corollary 3.6).
• Section 5 relates the Betti numbers to the f -vector of a polytope PM .

Construction 4.1. Let { ai = (ai1, . . . , ain) | 1 ≤ i ≤ r } be the exponent vectors of the
minimal generators of M . Choose vectors εi = (εi1, . . . , εin) ∈ Rn for 1 ≤ i ≤ r such that,
for all i and all s �= t, the numbers ais + εis and ait + εit are distinct, and

ais + εis < ait + εit implies ais ≤ ait.

The last condition is satisfied for all sufficiently small positive εi. Each vector εi defines
a monomial xεi = xεi1

1 · · ·xεin
n with real exponents. Abbreviate ε := (ε1, . . . , εr). We

formally introduce the generic monomial ideal (in a polynomial ring with real exponents):

Mε := 〈m1 · xε1 , m2 · xε2 , . . . , mr · xεr 〉.

We call Mε a generic deformation of M . Let ∆Mε be the Scarf complex of Mε. We now
label the vertex of ∆Mε corresponding to mi · xεi with the original monomial mi. Let Fε

be the complex of S-modules defined by this labeling of ∆Mε as in Construction 2.1.

Example 4.2. A simple way of deforming M is to pick an integer ν > r and set Mε :=
〈mν

i ·(x1x2 · · ·xn)i : i = 1, . . . , r 〉. This amounts to choosing εij = i/ν in Construction 4.1
since the ideals Mε and 〈mi · (x1x2 · · ·xn)

i
ν : i = 1, . . . , r 〉 have the same Scarf complex.

If M is square-free then 〈m1, m
2
2, . . . , m

r
r〉 is a generic deformation of M .

Theorem 4.3. The complex Fε is a free resolution of S/M over S.

Proof: Fix a monomial m. Let J be the largest subset of {1, . . . , r} such that mJ divides
m. The following conditions are equivalent for a subset I of {1, . . . , r}:

mI divides m ⇐⇒ I ⊆ J ⇐⇒ mI divides mJ ⇐⇒ mI(ε) divides mJ(ε).

Here mI(ε) := lcm
(
mixεi : i ∈ I

)
. The last equivalence follows from our choice of the

εij . The set of all faces of ∆Mε
which satisfy the four equivalent conditions above is an

acyclic simplicial complex, by Theorem 3.2 and Lemma 2.2 applied to Mε[mJ(ε)]. Now
apply Lemma 2.2 to M and m with ∆ = ∆Mε

.

Corollary 4.4. The Betti numbers of M are less than or equal to those of any deformation

Mε, that is, less than or equal to the face numbers of the Scarf complex ∆Mε
.

We emphasize that the Betti numbers of Mε depend on the choice of the generic de-
formation. There are finitely many complexes ∆Mε

which can be obtained by Construction
4.1 and each of them corresponds to an ε lying in an open convex polyhedral cone in Rr·n.

Example 4.5. Consider the ideal M = 〈x2, xy2z, y2z2, yz2w, w2〉 in Example 3.5. A generic
deformation is Mε = 〈x2, xy2z, y3z3, yz2w, w2〉. Label the generators as 1, 2, 3, 4, 5 in the
given order. The Scarf complex of Mε consists of the tetrahedron {1, 2, 4, 5} and the triangle
{2, 3, 4}. Applying Construction 4.1 we obtain a nonminimal free resolution Fε of S/M .
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The Betti numbers of S/M are 1, 5, 7, 4, 1 while the Betti numbers of S/Mε are 1, 5, 8, 5, 1.
Thus Fε differs from the minimal resolution by a single summand 0 → S → S → 0,

placed in homological degrees 2 and 3. However, this makes a big difference structurally:
by Corollary 3.6, the resolution Fε is a DG-algebra (with a simple multiplication rule)
while the minimal free resolution admits no DG-algebra structure at all. Note that Taylor’s
resolution is one step longer than Fε. It has Betti numbers 1, 5, 10, 10, 5, 1.

Remarks 4.6. (a) In deforming monomial ideals we are guided by the intuition of
continuously varying real exponents. However, no algebra in a polynomial ring with real
exponents is used. The Scarf complex of a generic monomial ideal depends only on the
coordinatewise order of the exponents of the generators. If the exponents are real numbers,
then we can replace them by integers while preserving their order coordinatewise. We will
obtain a monomial ideal with integer exponents and the same Scarf complex.

(b) The irreducible decomposition of any monomial ideal M can be computed by
applying Theorem 3.7 to a generic deformation Mε and then setting ε = 0.

(c) Let W be a homogeneous ideal in S. If u is a non-zero-divisor in S/W and G is a
resolution of S/W over S, then G ⊗ S/〈u〉 is a resolution of S/W + 〈u〉 over S/〈u〉. This
is sometimes called “deforming the resolution” and is very useful in Gröbner basis theory
and for polarizing monomial ideals into square-free monomial ideals. We emphasize that
it is very different from Construction 4.1. When “deforming the resolution”, one just sets
u = 0 in the matrices of the differentials in G, while Construction 4.1 changes the entries
in these matrices in accordance with the changes of the degrees of the generators.

5. Convexity

Polytopes are a powerful tool for structuring combinatorial data appearing in algebra and
algebraic geometry. For example, Newton polytopes play a significant role in computer
algebra, singularity theory and toric geometry. In this section we present the polytope
underlying the minimal free resolution of a generic monomial ideal M .

Let M [m] be the subideal of M generated by the generators of M which divide a given
monomial m. Then M [m] is a generic monomial ideal as well, and its Scarf complex equals

∆M [m] = ∆M [m]. (5.1)

Lemma 2.1 and (5.1) imply that the exactness of F∆M
for all M is equivalent to the acyclicity

of ∆M for all M . In fact, the following stronger result holds.

Theorem 5.1. The Scarf complex ∆M of a generic monomial ideal M is contractible.

The Scarf complex need not be pure, and it need not be shellable either:

Example 5.2. Let M := 〈xyz, x4y3, x3y5, y4z3, y2z4, x2z2 〉. The Scarf complex of this
generic monomial ideal consists of two triangles and an edge meeting at a vertex.
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Here ∆M is contractible, but not shellable, even in the nonpure sense of [BW].

Theorem 5.1 will be derived from Proposition 5.3, which is an extension of Theorem
2.8.4 in [Sc, §2.8]. In Scarf’s book the faces of ∆M are called “primitive sets”. Scarf’s
original definition of “primitive sets” in [Sc, §2.8] is as follows:

I ∈ ∆M ⇐⇒ ∀ i ∈ {1, . . . , r} ∃ j ∈ {1, . . . , n} : aIj ≤ aij (5.2)

where aIj = max{ aij | i ∈ I }. We will prove that this is equivalent to our definition (3.1).

Proposition 5.3. Let M be a generic monomial ideal. There exists a polytope PM in Rn

such that ∆M is isomorphic to the subcomplex of the boundary of PM consisting of all faces

supported by a strictly positive inner normal vector.

Construction 5.4. [Sc] One possible choice of a polytope PM satisfying Proposition 5.3
is as follows. Let ai = (ai1, ai2, . . . , ain) ∈ Nn be the exponent vector of the i-th minimal
generator of M . We fix a sufficiently large real number t 	 0 and define PM as the convex
hull of the point set

{ (at
i1, a

t
i2, . . . , a

t
in) | 1 ≤ i ≤ r } ⊂ Rn. (5.3)

The combinatorial type of PM is independent of t for large t.

Proof of Proposition 5.3: We identify each face of PM with a subset I ⊆ {1, . . . , r}, namely,
the indices of vertices which lie on that face. Let I be a face of PM with inner normal vector
(w1, . . . , wn) where wj > 0 for j = 1, . . . , n. We may assume

∀ i ∈ {1, . . . , r} : w1 · at
i1 + · · · + wn · at

in ≥ 1, (5.4)

and equality holds in (5.4) if and only if i ∈ I. This implies aIj ≤ w
−1/t
j for all j ∈

{1, . . . , n}. At least one of the summands in (5.4) is greater or equal to 1/n. Consequently,

∀ i ∈ {1, . . . , r} ∃ j ∈ {1, . . . , n} : aij ≥ w
−1/t
j · n−1/t ≥ aIj · n−1/t.
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Now let t →∞. Then we can erase the factor n−1/t → 1, and (5.2) is satisfied.

For the converse we consider the special case where M is Artinian. We first show that
∆M is pure of dimension n − 1. We may assume that aij = 0 for 1 ≤ i �= j ≤ n and
ali < aii for 1 ≤ i ≤ n < l ≤ r. Consider any I ∈ ∆M with |I| < n. Then there exists i ∈ I

such that ai and aI agree in at least two coordinates, say j and j′. Consider the set

S :=
{

l ∈ {1, . . . , r} | alj > aij = aIj and ∀i ∈ I ∃s : ais > als

}
.

It is nonempty since j ∈ S. Select l ∈ S with alj smallest. Then I ∪ {l} ∈ ∆M .
We next consider the oriented matroid [BLSWZ] of the configuration in (5.3) plus the

origin. Set a0j := 0 for all j and define for 0 ≤ i0 < . . . < in ≤ r

[i0, i1, . . . , in] := sign
(
det




1 at
i01

at
i02

· · · at
i0n

1 at
i11

at
i12

· · · at
i1n

...
...

...
. . .

...
1 at

in1 at
in2 · · · at

inn




)
.

Let I = {i1, . . . , in} be a maximal face of ∆M . There exists a unique permutation σ =
(σ1, . . . , σn) of I such that aIj = aσjj for all j. Since t 	 0, we have

sign(σ) = [ 0, i1, . . . , in].

For j �∈ I there exists an s with ajs > aσjs. Laplace expansion along the s-th column gives

[ j, i1, . . . , in] = −sign(σ) for all j �∈ I.

This shows that I is a facet of PM which is visible from the origin. Since PM intersects
each coordinate axis, the normal vector of I is strictly positive.

Now drop the assumption that M is Artinian and let I be a maximal face of ∆M . Let
M ′ be an Artinian ideal obtained from M by adding large powers of the variables. Then I

lies in ∆M ′ as well. Therefore I is a face of PM ′ having a positive inner normal vector, and
since PM ⊆ PM ′ , that same positive vector is minimized over PM at I.

It follows from our discussion that the Scarf complex ∆M is pure and shellable when
M is Artinian, that is, when every variable xi appears to some power in M .

Corollary 5.5. If M is Artinian and generic, then ∆M is a regular triangulation of the

(n− 1)-simplex.

Proof: See [Zi] for the definition and basic properties of regular triangulations. The
polytope PM lies in the positive orthant and intersects each coordinate axis. Each face of
PM visible from the origin is a simplex. The set of these faces is ∆M .

Example 5.6. Consider the ideal M = 〈x4, y4, z4, xy2z3, x3yz2, x2y3z〉. This ideal is
Artinian and generic. The Scarf complex ∆M of M is a regular triangulation of a triangle:
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Note that PM is an octahedron. The minimal free resolution of S/M equals F∆M
.

Proof of Theorem 5.1: Let I be a face of PM and let N (I) denote the inner normal cone
of PM at I. By Proposition 5.3, the Scarf complex ∆M consists of all faces I such that
N (I) intersects the open positive orthant. Choose an ε > 0 such that I ∈ ∆M if and only
if the closed cone N (I) =

⋂
i∈I N ({i}) intersects the (n− 1)-simplex

T :=
{

(u1, . . . , un) ∈ Rn : u1 + · · ·+ un = 1 , ui ≥ ε for all i
}
.

Then
⋂

i∈I

(
N (i) ∩ T

)
is nonempty if and only if I ∈ ∆M . Thus

{
N (i) ∩ T

}
1≤i≤r

is a
cover of T by polytopes. The nerve of this cover equals ∆M . Using Borsuk’s Nerve Lemma,
we see that ∆M is homotopy equivalent to T .

6. Extremal combinatorics

In this section we provide upper bounds for the Betti numbers of an arbitrary mono-
mial ideal, and we explore further connections to extremal combinatorics. Set βi(n, r) :=
max {βi(M)} where the maximum is taken over all monomial ideals M with r minimal gen-
erators in k[x1, . . . , xn]. It follows from Corollary 5.3 that βi(n, r) is attained by a monomial
ideal M which is generic. We may assume that M is Artinian, by the following easy lemma:

Lemma 6.1. Let M = 〈m1, m2, . . . , mr〉 be a generic monomial ideal where m1 =
xi1

1 xi2
2 · · ·xin

n and i1 > degx1(mj) for j ≥ 2. If M ′ = 〈xi1
1 , m2, . . . , mr〉 then the Scarf

complex ∆M is a subcomplex of the Scarf complex ∆M ′ .

Corollary 6.2. βi(n, r) equals the maximal number of i-faces of any Scarf complex ∆M ,

where M runs over all Artinian generic monomial ideals M with r generators in n variables.

Proof: Apply Lemma 6.1 repeatedly until all variables appear to some power. Take the
resulting generic Artinian monomial ideal M and apply Corollary 3.3 (1).

Each Scarf complex ∆M considered in Corollary 6.2 is the boundary of a simplicial
n-polytope with at least one facet removed, by Corollary 5.5. The Upper Bound Theorem
for Convex Polytopes (cf. [Zi, Thm. 8.23]) implies the following result:
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Theorem 6.3. The Betti numbers of monomial ideals satisfy the inequalities of the Upper

Bound Theorem for Convex Polytopes. More precisely, if ci(n, r) denotes the number of

i-dimensional faces of the cyclic n-polytope with r vertices, then

βi(n, r) ≤ ci(n, r) for 1 ≤ i ≤ n− 2,

and βn−1(n, r) ≤ cn−1(n, r)− 1.

An explicit formula for ci(n, r) is given in [Zi, §8]. For instance, c1(3, r) = 3r −
6, c2(3, r) = 2r − 4 and c1(4, r) =

(
r
2

)
, c2(4, r) = r(r − 3), c3(4, r) = r(r − 3)/2. For

n ≤ 3 all simplicial polytopes with r vertices have the same f -vector, so the inequalities in
Theorem 6.3 are equalities. The results in [Ag] show that the inequalities can be equalities
for n = 4, r ≤ 12, but they are always strict inequalities for n = 4, r = 13. Agnarson
proved that β1(4, 13) = 77 while c1(4, 13) = 78; this also implies β2(4, 13) < c2(4, 13) and
β3(4, 13) < c3(4, 13)− 1 by the Euler and Dehn-Sommerville equations.

We next relate Scarf complexes to the dimension theory of partially ordered sets (see
[Tr]). Recall that the order dimension odim(P) of a finite poset P is the smallest number
s of linear extensions L1, . . . , Ls of P such that L1 ∩ . . . ∩ Ls = P. If ∆ is a simplicial
complex then odim(∆) denotes the order dimension of its face poset. It is well-known that
odim(∆) ≥ dim(∆) + 1. The case of equality is of special interest for us:

Theorem 6.4.
(a) A simplicial complex ∆ satisfies odim(∆) ≤ n if and only if ∆ is a subcomplex of the

Scarf complex ∆M for some generic monomial ideal M in k[x1, . . . , xn].
(b) Let ∆ be a triangulation of the n-ball whose boundary equals the boundary of an

(n− 1)-simplex. Then odim(∆) = n if and only if ∆ equals the Scarf complex ∆M of

a generic Artinian monomial ideal M in k[x1, . . . , xn].

Proof: The if-direction in both (a) and (b) is seen as follows: For i = 1, . . . , n let Li denote
the linear extension of the face poset of ∆M defined by ∆M → R, I !→ degxi

(mI) + ε|I| ,
where ε is a small positive real. The face poset of ∆M coincides with L1 ∩ . . . ∩ Ln.

We next prove the only-if direction in (a). Let ∆ be a simplicial complex on {1, . . . , r}
of order dimension at most n. Fix an embedding of posets φ : ∆ → Nn such that each coor-
dinate of φ is a linear extension of ∆. We define the monomial ideal M = 〈m1, m2, . . . , mr〉
where mi := xφ({i}). Let I be any face of ∆. Note that mI = lcm(mi : i ∈ I) divides
xφ(I). We must show that I is a face of ∆M . Suppose not. Then there exists a subset J

of {1, . . . , r} with I �= J but mI = mJ . If J is not a subset of I then pick any j ∈ J\I.
Then mj = xφ(j) does not divide xφ(I) (since φ is a poset embedding), but mj does divide
mI = mJ , a contradiction. If J is a subset of I then J is a proper face of I in ∆. In this
case we pick any i ∈ I\J . Now mi does not divide xφ(J) (since φ is a poset embedding),
but mi does divide mI = mJ , a contradiction.

We finally prove only-if in (b). By part (a) there is a generic monomial ideal M such
that ∆ is a subcomplex of ∆M . We may assume that ∆ and ∆M have the same vertices.
Applying Lemma 6.1 to the vertex labels of the (n − 1)-simplex triangulated by ∆, we
may also assume that M is Artinian. Both ∆ and ∆M are triangulations of the same
(n− 1)-simplex and ∆ ⊆ ∆M . Hence ∆ = ∆M .
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Corollary 6.5. βi−1(n, r) equals the largest cardinality of a family F of i-sets in {1, . . . , r}
such that the simplicial complex spanned by F has order dimension n.

It was shown in [Sp] (see also Theorem 2.13 in [Tr, §7]) that the complete graph on r

vertices has order dimension at least 2 + log2

(
log2(r − 1)

)
. Therefore

β1(n, r) ≤
(

r

2

)
− 1 for r 	 n . (6.1)

A central topic in discrete geometry is the Steinitz Problem of characterizing the face
lattices of all convex polytopes. While this problem has a beautiful solution due to Steinitz
in dimension 3 [Zi, Theorem 4.1], recent work of Richter-Gebert [Ri] shows that the Steinitz
Problem for 4-dimensional polytopes is essentially equivalent to classifying all semialgebraic
varieties (and hence intractible). We propose the following variant for monomial ideals:
(a) Classify all simplicial complexes which are Scarf complexes of generic (Artinian) mono-

mial ideals with r minimal generators in k[x1, . . . , xn].
(b) Classify all triangulations of the (n−1)-simplex whose face poset has order dimension n.

Theorem 6.4 implies that (a) and (b) are equivalent. This realizability problem is trivial
for n ≤ 2 variables. In three variables it is nontrivial but solved by a theorem of Schnyder
(see [Tr]): for any triangulation ∆ of a triangle there exists a generic Artinian monomial
ideal M ⊂ k[x, y, z] such that ∆ = ∆M . The analogous result does not hold for n = 4:

Theorem 6.6. There exists a triangulation of the tetrahedron with seven vertices which

is not the Scarf complex of any monomial ideal in four variables.

For the proof we need one lemma. Let ∆ be any simplicial complex on {1, . . . , n, . . . , r}
which is a triangulation of the (n−1)-simplex {1, . . . , n}. A labeling of ∆ is a family of
bijections

{
φI : I → {x1, . . . , xn}

}
I facet of ∆

which satisfies the following two axioms:
(A) If I is a facet of ∆ and i ∈ I ∩ {1, . . . , n} then φI(i) = xi.
(B) If I and J are facets of ∆ which share a common ridge, i.e. I∩J has cardinality n−1,

then { j ∈ I ∩ J : φI(j) = φJ′(j)} has cardinality n− 2.

Lemma 6.7. The Scarf complex ∆M of any generic artinian monomial ideal M possesses

a labeling φM . We call the labelings of the form φM realizable.

Proof: The labeling φM = {φM
I }I facet of ∆M is defined as follows: If I is a facet of ∆M

and j ∈ I then φM
I (j) is the unique variable missing in mI/mj . The map φM

I : I →
{x1, . . . , xn} is a bijection, and it is straightforward to check the axioms (A) and (B).

Proof of Theorem 6.6: Consider the following triangulation of a tetrahedron 1234:

∆ =
{
1237, 1245, 1256, 1267, 1347, 1457, 1567, 2345, 2356, 2367, 3456, 3467, 4567

}
.

The complex ∆ is the boundary of the cyclic polytope C4(7) minus the facet 1234.
By Lemma 6.7 it suffices to prove that ∆ does not admit any labeling. Suppose on the

contrary that ∆ possesses a labeling. Writing a, b, c, d for the four variables, the following
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labels are forced by the axioms:

[
2 3 4 5
b c d a

]
−→

[
3 4 5 6
c d b a

]
−→

[
3 4 6 7
c d b a

]

↘ ↓[
4 5 6 7
d b c a

]
−→

[
1 5 6 7
a b c d

]

2345 is labeled by axiom (A), and 3456 and 3467 successively by axioms (A) and the “ridge
axiom” (B). These last two tetrahedra each allow two labelings of 4567; the one shown is
the common allowable labeling, forcing the labeling shown on 1567.

On the other hand, the following labels are also forced:

[
1 2 3 7
a b c d

]
−→

[
1 2 6 7
a b d c

]

Now, there is a contradiction to axiom (B) in the labelings of 1267 and 1567.
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