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Exam 1
Combinatorics, Dave Bayer, February 16-20, 2022

Please show all of your work. You will be graded for both your answers and your explanations. You
need not complete the entire exam; some questions are intended to be challenging.

�is test is open-book. You may use any resource such as my course materials, textbooks, or �e
On-Line Encyclopedia of Integer Sequences. You may not receive help from another person.

“What can you say about f(n)?” is up to you. �ere might be a formula. �ere might be a generating
function. You might notice a pattern, or recognize the sequence.

Please match your understanding of my words with the examples, and contact me if you’re concerned
about any ambiguity.

[1] Shown are two grids with shaded obstacles. We are counting paths that start in the lower left square,
end in the upper right square, and step either up or to the right, avoiding the obstacles. For the smaller
grid there are 7 paths. How many paths are there, for the larger gird?

[2] Count paths as before. Let f(n) be the number of paths that avoid the diagonal squares on an n × n

grid, except at the start and the end. As shown below, f(4) = 4. Find f(5) and f(6). What can you say
about f(n)?
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[3] Let f(n) be the number of words of length n in the alphabet {a,b, c} with the property that b never
immediately follows a. As shown below, f(3) = 21. Find f(4) and f(5). What can you say about f(n)?

[4] Let f(n) be the number of ways of arranging 1× 1 tiles and 1× 2 tiles in a 2×n grid. As shown below,
f(1) = 2 and f(2) = 7. Find f(3) and f(4). What can you say about f(n)?
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[5] Let f(n) be the number of ways of placing three markers on an n×n board so no two markers are side
by side, either vertically or horizontally. As shown below, f(3) = 22. Find f(4). What can you say about
f(n)?
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[1] Shown are two grids with shaded obstacles. We are counting paths that start in the lower left square,
end in the upper right square, and step either up or to the right, avoiding the obstacles. For the smaller
grid there are 7 paths. How many paths are there, for the larger gird?
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[3] Let f(n) be the number of words of length n in the alphabet {a,b, c} with the property that b never
immediately follows a. As shown below, f(3) = 21. Find f(4) and f(5). What can you say about f(n)?

[4] Let f(n) be the number of ways of arranging 1⇥ 1 tiles and 1⇥ 2 tiles in a 2⇥n grid. As shown below,
f(1) = 2 and f(2) = 7. Find f(3) and f(4). What can you say about f(n)?
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Another approach consider all words in
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Alternate approach

These are length n words using thealphabet

The letters havetomatchuptoformralid words

D DOODOOOODED
We get a transition matrix

I I I I rightedge
iii



We can get the diagrams themselves by the
Cl D entry in powers of this matrix of drawings

For just the counts f n

I I I still 1

A AZ A3 A4

For the generating function Flt É font

EAnt I At

at t t t

y

Fa

ff
t t t o

t t 1 O skip

t o o 1

use formula for inverse or
Ege're stem

I 2 t t t t 1 2 t t t t o

f
t I t o t I t o

t t 1 of
t

t 1 Of
t o o 1 0 0 1

Adding t row 4 to row 1 doesn'tchangedeterminant



This reduces us to 3 3 keepplaying this game

1 Zt E t t 1 2 28 t t o

I I I E
E te o

t 2

This reduces us to 2 2

11
2 28 t t
t t 1 2

2 2 244 22 EE.EE
ft E ft E r.tt
L 2t 4tHt

I t o

Now the numerator ft s
g

l E
o o

so

FIAI.EET EEKsEEF

ifIjf IEEE
I 2 4 0 I as before



Exam �, February ��-��, ����

[5] Let f(n) be the number of ways of placing three markers on an n⇥n board so no two markers are side
by side, either vertically or horizontally. As shown below, f(3) = 22. Find f(4). What can you say about
f(n)?



5 There are 3 ways to place 3 markers
on an nxn board

Lt

III

There are 2n n 1 R2 ways to place
3 markers so at least one pair is adjacent

til Eff if four rotations

2n n 2 4 h if

There are two configurations thatgetsubtracted
twice and need to be added back in



Fln

3 2n n 1 R2 2n n 2 4 n if

n 2

Y 2.2 1 2 2 2.0 4.12

4 8 4 08
n 3

3 2.3.2.7 2.3 4.22

38144 84 84 6 16 220

n 4

Y 2.4 3 14 2.4.2 4.32

818311,15
8.5 24.3714 16 36
40 24
16.14 16 36

CRAIG 16.15 36 276



Exam 2, April 6-10, 2022

Exam 2
Combinatorics, Dave Bayer, April 6-10, 2022

Please show all of your work. You will be graded for both your answers and your explanations. You need
not complete the entire exam; the questions vary in di�culty.
[1] How many ways can we color the cells of a strip of n squares using at most k colors, counting two
patterns as the same if one is a reversal of the other?

[2] How many ways can we color the cells of this beehive using at most k colors, up to the dihedral group
of rotations and �ips? Con�rm your answer for k = 2, by �nding all patterns up to symmetry.

[3] How many ways can we color the edges of a cube using at most k colors, up to the group of rotational
symmetries? Can you check your answer for k = 2?

[4] Let f(n) be the number of ways of dissecting an n-gon by at least one cut, up to the dihedral group of
rotations and �ips. As shown, f(4) = 1 and f(5) = 2. Find f(6) two ways, by drawing the cases by hand
and by using Burnside’s lemma.

[5] How many ways can we color the faces of a cube using at most k colors, up to the group of symmetries
generated by rotations and re�ections (“look in the mirror”)?
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Please show all of your work. You will be graded for both your answers and your explanations. You need
not complete the entire exam; the questions vary in di�culty.

[1] How many ways can we color the cells of a strip of n squares using at most k colors, counting two
patterns as the same if one is a reversal of the other?
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[2]Howmany ways can we color the cells of this beehive using at most k colors, up to the dihedral group
of rotations and �ips? Con�rm your answer for k = 2, by �nding all patterns up to symmetry.
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[3]How many ways can we color the edges of a cube using at most k colors, up to the group of rotational
symmetries? Can you check your answer for k = 2?
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We can confirm the smallercountsby hand and seetheyaddup
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[4] Let f(n) be the number of ways of dissecting an n-gon by at least one cut, up to the dihedral group of
rotations and �ips. As shown, f(4) = 1 and f(5) = 2. Find f(6) two ways, by drawing the cases by hand
and by using Burnside’s lemma.
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[5]Howmany ways can we color the faces of a cube using at most k colors, up to the group of symmetries
generated by rotations and re�ections (“look in the mirror”)?

There are 48 symmetries of thecubeincluding reflections

pick a corner 8

pickan edgemeetingthat corner 3

picka rotationaldirection orientation 2GIF
83.2 480 wehavestudied the 24 rotationsthat

preserve orientation

It is harder to classifythe 24
symmetriesthatreverseonentation

someinvolvenotone but 3 reflections

tf Effy FIFA FIFA 16 8 6 3 240

identity halfturn
A thirdturn

a quarterturna halfturns

For eachstation we will alsogroupfacesby
whathappens inthe mirror

faces leavessidesaloneÉEÉ fIg r
minorswaesentanoback

EFFEEEE.EE
rotation

EZ.EEmimd
reflections

mirror swaps kb ks
Aand B

BODE identity ABO DOE



rotations
Gk3 21 4 4152t.EEmdrerec

EFEIEE halftone

É EFFETE ÉWEEEEY
D ABDO BOD AEBFI AIDED

É Éfm reflections
8k IEF.tn anginal 8

EFFETHÉI thington counteachaxiseitherway

EEE EEE É t.EEYAEDBCFAEDOBFCAFBDE
AFDBEC

AEcBtDDsEIm.Dreflections
6

ftp.agngalwn
4154 215

EFFETIEEI counteachaxiseitherway

t.EE EEE.EEE
AEBFD DEPED ABODE ADDED



É Ekland reflections
3K

EFIfongnang
2155 1

EFFETEETE

t.EE EAIEE
ABODE AUBADE ABODE ADDED

rotations Kst 61 3 817 61 3 314

reflections K 2154 4192 811 41 4 2152 2155 1

84 1415 1311391544315511812



Final Exam, May 3-13, 2022

Final Exam
Combinatorics, Dave Bayer, May 3-13, 2022

Please show all of your work. You will be graded for both your answers and your explanations. You need
not complete the entire exam; the questions vary in di�culty.

[1] How many ways can we place four balls in n bins, if each bin has a capacity of two balls?
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[2] �ere are twelve ways to dissect an octagon (8-gon) into quadrilaterals (4-gons), using noncrossing
diagonals. How many ways can we dissect a decagon (10-gon) into quadrilaterals?
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[3]�ere are �ve ways to dissect a pentagon (5-gon) making one cut. �ere are �ve Young tableaux with the
corresponding shape under Stanley’s correspondence. Which Young tableau goes with which dissection?



Final Exam, May 3-13, 2022

[4] Let Gk be the complete graph on k vertices, with one edge deleted. How many ways can we properly
color the vertices of Gk using at most n colors? (For a proper coloring, adjacent vertices have distinct
colors.)



Final Exam, May 3-13, 2022

[5] �ere are twelve ways to glue together pairs of sides of a square, while choosing which gluings reverse
orientation.

�ere are six combinatorially distinct cases, which yield four distinct topological surfaces.

Understanding these gluings in general is a famous problem: �e Harer-Zagier formula counts gluings
that yield a genus g surface, and was applied to solve a deep problem in algebraic geometry.

What can you say about gluing a hexagon?



Final Exam, May �-��, ����

Final Exam
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Please show all of your work. You will be graded for both your answers and your explanations. You need
not complete the entire exam; the questions vary in di�culty.
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[2] �ere are twelve ways to dissect an octagon (8-gon) into quadrilaterals (4-gons), using noncrossing
diagonals. How many ways can we dissect a decagon (10-gon) into quadrilaterals?

Let'swork out thesecounts from thebeginning

We can build hexagons byattachingtwo squares all possibleways

There is way to hang a square offeachside of the pot square



we can classify octagons the same way
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This aunt is similartothecatalan numbers
The only difference there is binary not 3 way trees

Flt It t FAR
case
empty

F D Dtt Et EEE Et

2 2 2 t 5

2 2 14 2 2 t 42

FEED tf It JE

t t t t3

t t t t t

Our problem satisfies a similar equation glt Itt get

ÉEEFEEESE
glt Dtt Et Etat



This equation gives an iterative algorithm for computingget
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The Haskell programminglanguage usescallbyneed lazy evaluation
allowing it to support infinite lists Haskelleasilyexpresses thisgeneratingfunction

If youdevelop an interest in Haskell I'm happy to offer support



Just as there is aformula for theCatalannumbers
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[3]�ere are�veways to dissect a pentagon (5-gon)making one cut.�ere are�veYoung tableauxwith the
corresponding shape under Stanley’s correspondence. Which Young tableau goes with which dissection?
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[4] Let Gk be the complete graph on k vertices, with one edge deleted. How many ways can we properly
color the vertices of Gk using at most n colors? (For a proper coloring, adjacent vertices have distinct
colors.)

First approach
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[5]�ere are twelve ways to glue together pairs of sides of a square, while choosing which gluings reverse
orientation.

�ere are six combinatorially distinct cases, which yield four distinct topological surfaces.

Understanding these gluings in general is a famous problem: �e Harer-Zagier formula counts gluings
that yield a genus g surface, and was applied to solve a deep problem in algebraic geometry.

What can you say about gluing a hexagon?

Let'sbeginbyswitchingto a more vividnotation tohelpusthinkquicker
B A

A I I at
x 0 II I x 0 x I3 IT xe

In standardnotation edgecolorsandarrows arearbitrary
servingonly to identifygluedpairs and indicate orientation

In this stripnotation the overunderpattern is irrelevant
strips identify gluedpairs and a red line indicatesorientationreversal



To compute each Euler characteristic we need to relearn how
to punt vertices
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Up to symmetry there are 5 differentdiagrams



Foreach of these 5 diagrams we can now work out the possible
orientations and count vertices to compute each Euler characteristic
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