Exam 1

Combinatorics, Dave Bayer, February 11-14, 2021
[1] Moving up or over, for the grid on the left there are four paths between the corners that avoid the obstacle. For the grid on the right, how many paths avoid both obstacles?

[2] Let $f(n)$ be the number of n step paths from w to itself on the directed graph below. What is $f(12)$?

[3] Let $f(n)$ be the number of ways of making change for n cents, using 2 cent and 3 cent coins. As shown below, $f(6)=2, f(9)=2$, and $f(12)=3$. What is $f(18)$?

Let $g(t)=\sum_{n=0}^{\infty} f(n) t^{n}$ be the generating function for $f(n)$. Find a closed form expression for $g(t)$.
[4] A Young tableau is a way of filling in a staircase-shaped grid with the integers from 1 to n, so every row and every column is in ascending order. Let $f(n)$ be the number of Young tableaus for a $2 \times n$ grid. As shown below, $f(2)=2$ and $f(3)=5$. What is $f(5)$? What can you say about $f(n)$?

1	2	3
4	5	6

1	2	4
3	5	6

1	2	5
3	4	6

1	3	4
2	5	6

1	3	5
2	4	6

[5] Let $f(n)$ be the number of ways of arranging 1×2 bricks in a $3 \times 2 n$ grid. As shown below, $f(1)=3$ and $f(2)=11$. Find $f(3)$ and $f(4)$. What can you say about $f(n)$?

3×6

3×8

Exam 1

Combinatorics, Dave Bayer, February 11-14, 2021
[1] Moving up or over, for the grid on the left there are four paths between the corners that avoid the obstacle. For the grid on the right, how many paths avoid both obstacles?

[2] Let $f(n)$ be the number of n step paths from w to itself on the directed graph below. What is $f(12)$?

[3] Let $f(n)$ be the number of ways of making change for n cents, using 2 cent and 3 cent coins. As shown below, $f(6)=2, f(9)=2$, and $f(12)=3$. What is $f(18)$?

Let $g(t)=\sum_{n=0}^{\infty} f(n) t^{n}$ be the generating function for $f(n)$. Find a closed form expression for $g(t)$.
[4] A Young tableau is a way of filling in a staircase-shaped grid with the integers from 1 to n, so every row and every column is in ascending order. Let $f(n)$ be the number of Young tableaus for a $2 \times n$ grid. As shown below, $f(2)=2$ and $f(3)=5$. What is $f(5)$? What can you say about $f(n)$?

[5] Let $f(n)$ be the number of ways of arranging 1×2 bricks in a $3 \times 2 n$ grid. As shown below, $f(1)=3$ and $f(2)=11$. Find $f(3)$ and $f(4)$. What can you say about $f(n)$?

Exam 1

Combinatorics, Dave Bayer, February 11-14, 2021
[1] Moving up or over, for the grid on the left there are four paths between the corners that avoid the obstacle. For the grid on the right, how many paths avoid both obstacles?

$\binom{8}{4}=\frac{8 \cdot 7 \cdot 5^{2} \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}=70$

$\binom{3}{1}\binom{5}{3}=3 \cdot 10=30$

$\binom{6}{3}\binom{2}{1}=20 \cdot 2=40$

$\binom{3}{1}\binom{3}{2}\binom{2}{1}=18$

$$
70-30-40+18=18
$$

[2] Let $f(n)$ be the number of n step paths from w to itself on the directed graph below. What is $f(12)$?

2 step loop

$$
f(12)=12
$$

3 step loop

$$
f(n)=\left\{\begin{array}{ll}
0, n<0 \\
1, n=0 \\
f(n-2)+f(n-3), n>0
\end{array} \quad f(n)>\square, \ldots f(n-2)\right.
$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$f(n-2)$			1		1	1	1	2	2	3	4	5	7
$f(n-3)$				1		1	1	1	2	2	3	4	5
$f(n)$	1		1	1	1	2	2	3	4	5	7	9	12

\square 0000000000 00000000000 00000000000 00 \square
\square 000
[3] Let $f(n)$ be the number of ways of making change for n cents, using 2 cent and 3 cent coins. As shown below, $f(6)=2, f(9)=2$, and $f(12)=3$. What is $f(18)$?
(2) (2) (2)
(3) (3) 3
(2) (2) (2) 2) 2
(2) (2) (2) (3)
(3) (3) (3) 3

Let $g(t)=\sum_{n=0}^{\infty} f(n) t^{n}$ be the generating function for $f(n)$. Find a closed form expression for $g(t)$.

0	1	2	3	4	5	6	7	8	10	12	12	13	15	16	18			
	1		1		1		1		1	1	1		1		1		1	
	1		1	1	1	1	2	1	2	2	2	2	3	2	3	3	3	3

(2)(2)(2) (2)(2)(2) (2)(2)(2) $\quad f(18)=4$
(2) (2) (2) (2)(2) (2) (3) 3
(2) (2) (2) (3) (3) (3) (3)
(3) (3) (3) (3) (3)

$$
g(t)=1+
$$

$$
\begin{array}{r}
g(t)=(\underbrace{1+t^{2}+t^{4}+t^{6}+, \prime \prime}_{1 / 1-t^{2}})(\underbrace{1+t^{3}+t^{6}+t^{9}+, \prime}_{1 / 1-t^{3}}) \\
g(t)=\frac{1}{1-t^{2}-t^{3}+t^{5}} \quad \begin{array}{r}
\left(1-t^{2}\right)\left(1-t^{3}\right) \\
=1-t^{2}-t^{3}+t^{5}
\end{array}
\end{array}
$$

check: $\left(1-t^{2}-t^{3}+t^{5}\right) g(t)=1$

$$
g(t)
$$

1	1		1	1	1	1	2	1	2	2	2	2	3	2	3	3	3	3	4
$-t^{2}$			1		1	1	1	1	2	1	2	2	2	2	3	2	3	3	3
$-t^{3}$				1		1	1	1	1	2	1	2	2	2	2	3	2	3	3
$+t^{5}$						1		1	1	1	1	2	1	2	2	2	2	3	2

[4] A Young tableau is a way of filling in a staircase-shaped grid with the integers from 1 to n, so every row and every column is in ascending order. Let $f(n)$ be the number of Young tableaus for a $2 \times n$ grid. As shown below, $f(2)=2$ and $f(3)=5$. What is $f(5)$? What can you say about $f(n)$?

$$
\begin{array}{ll}
\begin{array}{ll}
1 & 2 \\
3 & 4 \\
\hline
\end{array} & \begin{array}{llll}
1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline
\end{array}\left|\begin{array}{llll|}
1 & 2 & 4 \\
\hline 3 & 5 & 6 \\
\hline
\end{array}\right| \begin{array}{llll|}
\hline 1 & 2 & 5 \\
3 & 4 & 6 \\
\hline
\end{array} \\
\begin{array}{llll}
1 & 4 & 3 & 4 \\
2 & 5 & 6 \\
\hline
\end{array} \begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6 \\
\hline
\end{array}
\end{array}
$$

We can think of a Young tableau as instructions for growing a staircase:

The second row cant get ahead af the first row.
Think of first row as \rightarrow, second row as \uparrow
This is same problem as not exceeding diagonal in a lattice walk.

1	2	3
4	5	6

1	2	4
3	5	6

1	2	5
3	4	6

1	3	4
2	5	6

1	3	5
2	4	6

We recognize the Catalan numbers.

	n					
	1	2	3	4	5	6
		1	2	5	14	42

$$
f(5)=42
$$

$$
f(n)=C_{n}
$$

[5] Let $f(n)$ be the number of ways of arranging 1×2 bricks in a $3 \times 2 \mathfrak{n}$ grid. As shown below, $f(1)=3$ and $f(2)=11$. Find $f(3)$ and $f(4)$. What can you say about $f(n)$?

Exam 2

Combinatorics, Dave Bayer, March 18-21, 2021
To receive full credit for correct answers, please show all work.
[1] How many ways can we choose three edges of a regular tetrahedron, up to rotational symmetry? Confirm your answer by finding all patterns up to symmetry.

[2] How many ways can we k-color the six sides of a regular hexagon, up to rotational and flip symmetries? Confirm your answer for $k=2$, by finding all patterns up to symmetry.

[3] How many ways can we choose two squares of a 4×4 board, up to rotational and flip symmetries? Confirm your answer by finding all patterns up to symmetry.

[4] How many ways can we choose 2 or 3 faces of a regular dodecahedron up to rotational symmetry? Confirm your answers by finding all patterns up to symmetry.

[5] How many ways can we choose two cubes from a $3 \times 3 \times 3$ array of 27 cubes, up to rotational symmetry? (This is not a Rubik's Cube. The symmetries are the 24 rotations we have studied of a solid cube.)

Exam 2

Combinatorics, Dave Bayer, March 18-21, 2021
To receive full credit for correct answers, please show all work.
[1] How many ways can we choose three edges of a regular tetrahedron, up to rotational symmetry? Confirm your answer by finding all patterns up to symmetry.

[2] How many ways can we k-color the six sides of a regular hexagon, up to rotational and flip symmetries? Confirm your answer for $k=2$, by finding all patterns up to symmetry.

[3] How many ways can we choose two squares of a 4×4 board, up to rotational and flip symmetries? Confirm your answer by finding all patterns up to symmetry.

[4] How many ways can we choose 2 or 3 faces of a regular dodecahedron up to rotational symmetry? Confirm your answers by finding all patterns up to symmetry.

[5] How many ways can we choose two cubes from a $3 \times 3 \times 3$ array of 27 cubes, up to rotational symmetry? (This is not a Rubik's Cube. The symmetries are the 24 rotations we have studied of a solid cube.)

Exam 2
Combinatorics, Dave Bayer, March 18-21, 2021
To receive full credit for correct answers, please show all work.
[1] How many ways can we choose three edges of a regular tetrahedron, up to rotational symmetry? Confirm your answer by finding all patterns up to symmetry.

$$
\binom{6}{3}=20
$$

A BCCDD

$$
2 \cdot 2=4 \quad 2
$$

$$
\frac{1}{12}(20+3 \cdot 4+8 \cdot 2)=48 / 12=4
$$

Check:

[2] How many ways can we k-color the six sides of a regular hexagon, up to rotational and flip symmetries? Confirm your answer for $k=2$, by finding all patterns up to symmetry.

2
1/6 turns
side flops
vertex flips

k^{4}

$$
\frac{1}{12}\left(k^{6}+3 k^{4}+4 k^{3}+2 k^{2}+2 k\right)
$$

$$
k=2: \frac{1}{12}\left(\begin{array}{c}
64+\underset{48}{3 \cdot 16}+\underset{32}{4 \cdot 8}+\underset{8}{2 \cdot 4}+\underset{4}{2 \cdot 2})=156 / 12=13
\end{array}\right.
$$

Check:

[3] How many ways can we choose two squares of a 4×4 board, up to rotational and flip symmetries? Confirm your answer by finding all patterns up to symmetry.

$$
|G|=4 \text { corners } \cdot 2 \text { edges }=8
$$

Identity
$\binom{16}{2}=8 \cdot 15=120$

1/2 turn 8

2

0

side flips
8

vertex flips
$(4)+6=12$

$$
\frac{1}{8}(120+8+\underset{16}{2 \cdot 8}+\underset{24}{2 \cdot 12})=168 / 8=21
$$

Check:

[4] How many ways can we choose 2 or 3 faces of a regular dodecahedron up to rotational symmetry? Confirm your answers by finding all patterns up to symmetry.

12 pentagon faces
30 edges $5 \cdot 12 / 2$
20 vertices $5 \cdot 12 / 3$
choose vertex then edge

$$
|G|=20 \cdot 3=60
$$

Identity

15

20

24
Face turns A Ccccc B DDDDD

0
4

1

$$
\begin{array}{ll}
k=2 & \frac{1}{60}(66+15 \cdot 6+20 \cdot 0+24 \cdot 1)=180 / 60=3 \\
k=3 & \frac{1}{60}(220+15 \cdot 0+20 \cdot 4+24 \cdot 0)=300 / 60=5
\end{array}
$$

$k=2 \quad 3$

$k=3 \quad 5$

[5] How many ways can we choose two cubes from a $3 \times 3 \times 3$ array of 27 cubes, up to rotational symmetry? (This is not a Rubik's Cube. The symmetries are the 24 rotations we have studied of a solid cube.)

identity 1
1

$$
\begin{aligned}
\binom{27}{2} & =\frac{27.26}{2.1} \\
& =351
\end{aligned}
$$

$1 / 2$ turn
3

$1 / 4$ turn either way 6

3 cubes on axis 6 quads

$$
\left(\frac{3}{2}\right)=3
$$

$1 / 3$ turn either way 8

8 triplets $\left(\frac{3}{2}\right)=3$

$$
\frac{1}{24}(351+9 \cdot 15+14 \cdot 3)=528 / 24=22 \text { ways to pick two cubes }
$$

Check:

$$
3+7+2+5+3+2=22
$$

Final Exam

Combinatorics, Dave Bayer, April 20-23, 2021
To receive full credit for correct answers, please show all work.
[1] How many ways can we dissect an octagon using 2 cuts? Provide a check of your answer. (You may solve the problem two different ways, or classify the possibilities, or draw every possibility.)

[2] For each of the following Young tableaux, find the dissection of an n-gon given by Stanley's correspondence.

1	2	3
4	5	6
7		
8		

1	5	7
2	6	8
3		
4		

1	2	4
3	5	8
6		
7		

[3] Identify each of the following surfaces from their gluing diagrams, computing their Euler characteristic and deciding whether or not they are orientable. Which two surfaces are homeomorphic (topologically equivalent)?

[4] How many ways can we properly color the vertices of a hexagon using n colors, up to rotational symmetry? Confirm your answer by drawing each of the possibilities for $n=3$.
(For a proper coloring, adjacent vertices have distinct colors. You need not use every color.)

[5] How many ways can we dissect an octagon using 4 cuts, up to dihedral (rotations and flips) symmetry? Confirm your answer by drawing each of the possibilities. Which patterns are not chiral?

Final Exam

Combinatorics, Dave Bayer, April 20-23, 2021
To receive full credit for correct answers, please show all work.
[1] How many ways can we dissect an octagon using 2 cuts? Provide a check of your answer.
(You may solve the problem two different ways, or classify the possibilities, or draw every possibility.)

[2] For each of the following Young tableaux, find the dissection of an n-gon given by Stanley's correspondence.

1	2	3
4	5	6
7		
8		

1	5	7
2	6	8
3		
4		

1	2	4
3	5	8
6		
7		

[3] Identify each of the following surfaces from their gluing diagrams, computing their Euler characteristic and deciding whether or not they are orientable. Which two surfaces are homeomorphic (topologically equivalent)?

[4] How many ways can we properly color the vertices of a hexagon using n colors, up to rotational symmetry? Confirm your answer by drawing each of the possibilities for $n=3$.
(For a proper coloring, adjacent vertices have distinct colors. You need not use every color.)

[5] How many ways can we dissect an octagon using 4 cuts, up to dihedral (rotations and flips) symmetry? Confirm your answer by drawing each of the possibilities. Which patterns are not chiral?

Final Exam
Combinatorics, Dave Bayer, April 20-23, 2021
To receive full credit for correct answers, please show all work.
[1] How many ways can we dissect an octagon using 2 cuts? Provide a check of your answer.
(You may solve the problem two different ways, or classify the possibilities, or draw every possibility.)

8 sides
$\left(\frac{8}{2}\right)=\frac{8.7}{2.1}=28$ pairs of vertices
$\binom{20}{2}=\frac{20.19}{2.1}=190$ pals of ats
$\Rightarrow 28-8=20$ interior ats
$\binom{8}{4}=\frac{28 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}=70$ crossing pairs

2 at dissections
check: There should be $2,120=240$ ordered dissetouns

n	4	5	6	7	8
$\binom{n}{2}$	6	10	15	21	28
interior cots	2	5	9	14	20

8 rotations
14 second arts
112

9
8 rotations
$2+9=11$ second arts
88
55
4 rotations
$5+5=10$ second arts $\frac{40}{240 \text { © }}$

Check: Classify by position of first att in sorting order:

$14+10+6+3+1+0=34$

$$
10+7+4+2+1=24
$$

$8+6+4+3=21$

$8+7+6=21$
$9+1$

$10+10=20$

$$
34+24+21+21+20=120 \mathrm{~d}
$$

Check: Find up to rotational symmetry, and multiply by orbit sizes.

8 rotations
(5) variants
80

$$
80+36+4=120
$$

[2] For each of the following Young tableaux, find the dissection of an n-gon given by Stanley's correspondence.

1	2	3
4	5	6
7		
8		

1	5	7
2	6	8
3		
4		

1	2	4
3	5	8
6		
7		

1	2	3
4	5	6
7		
8		

1	5	7
2	6	8
3		
4		

1	2	4
3	5	8
6		
7		

$\begin{array}{lll}1 & 2 & 4 \\ 3 & 567 & 8\end{array}$

[3] Identify each of the following surfaces from their gluing diagrams, computing their Euler characteristic and deciding whether or not they are orientable. Which two surfaces are homeomorphic (topologically equivalent)?

non-orientable

$$
x=4-4+1=1
$$

orientable

$$
x=1-4+1=-2
$$

* Second and fourth surfaces are the same.
[4] How many ways can we properly color the vertices of a hexagon using n colors, up to rotational symmetry? Confirm your answer by drawing each of the possibilities for $n=3$. (For a proper coloring, adjacent vertices have distinct colors.)

Let $f_{K}(n)$ be the chromatic polynomial of a k-cycle.

$$
f_{K}(n)=(n-1)^{K}+(-1)^{K}(n-1)
$$

Simplification of formula from class, we can prove by induction:
Basis: $k=2$ ○ $f_{2}(n)=n(n-1)=(n-1)^{2}+(n-1)$ ©
Induction:

$$
\begin{aligned}
\text { unction: } & =n \\
f_{k}(n) & =n(n-1)^{k-1}-f_{k-1}(n) \\
(n-1)^{k}+(-1)^{k}(n-1) & =n(n-1)^{k-1}-\left[(n-1)^{k-1}+(-1)^{k-1}(n-1)\right]
\end{aligned}
$$

Apply Burnside's lemma $\frac{1}{161}$ [\#fixed patterns, each $g \in G$]

$$
G=\{0,1,2,3,4,5\} \quad 6^{\text {th }} \text { turns }|G|=6
$$

$$
0: \quad f_{6}(n)=(n-1)^{6}+(n-1)
$$

1,5: no proper colorings fixed under $1 / 6^{\text {th }}$ turn
2,4: repeating pattern every $1 / 3$ turn $\Leftrightarrow k=2 \quad f_{2}(n)=(n-1)^{2}+(n-1)$
3: repeating pattern every $1 / 2$ turn $\Leftrightarrow k=3 \quad f_{3}(n)=(n-1)^{3}-(n-1)$

$$
f(n)=\frac{1}{6}\left[(n-1)^{6}+(n-1)^{3}+2(n-1)^{2}+2(n-1)\right]
$$

Check: $f(1)=0$ ه

$$
f(2)=1 \Delta
$$

$$
f(3)=\frac{1}{6}[64+8+2 \cdot 4+2 \cdot 2]=84 / 6=14
$$

What does $f(n)$ look like expanded out?

$$
\begin{aligned}
f(n) & =\frac{1}{6}\left[(n-1)^{6}+(n-1)^{3}+2(n-1)^{2}+2(n-1)\right] \\
& =\frac{1}{6}\left[n^{6}-6 n^{5}+15 n^{4}-19 n^{3}+14 n^{2}-5 n\right]
\end{aligned}
$$

$$
\begin{array}{cc}
1 \\
1 & 1 \\
1 & 2
\end{array} 1
$$

check: $f(1)=0$ ه
30-30

$$
f(2)=1 ष
$$

Check in binary
(for computer scientists, or anyone bored by conventional arithmetic)

```
ln[1]= Try[f_, d_] := Module[{},
            Print[f/.m->n-1 // Expand];
            Print[f/.n n m+1 // Expand];
            Print[Table[f/d/.n mk/.m->k-1,{k, 5}]];]
ln[2]:= Try[m^6 +m^3+2 m^2+2m,6]
    -5n+14nn}-19\mp@subsup{n}{}{3}+15\mp@subsup{n}{}{4}-6\mp@subsup{n}{}{5}+\mp@subsup{n}{}{6
    2m+2m}\mp@subsup{m}{}{2}+\mp@subsup{m}{}{3}+\mp@subsup{m}{}{6
    {0,1,14, 130, 700}
ln[3]:= Try[nm(m^4-m^3+m^2+2),6]
    -5n+14 n}\mp@subsup{n}{}{2}-19\mp@subsup{n}{}{3}+15\mp@subsup{n}{}{4}-6\mp@subsup{n}{}{5}+\mp@subsup{n}{}{6
    2m+2m}\mp@subsup{m}{}{2}+\mp@subsup{m}{}{3}+\mp@subsup{m}{}{6
    {0, 1, 14, 130, 700}
ln[4]:= Try[nm^5-nm(m^3-m^2+m-1) + nm(n-2) + 2nm, 6]
    -5n+14\mp@subsup{n}{}{2}-19\mp@subsup{n}{}{3}+15\mp@subsup{n}{}{4}-6\mp@subsup{n}{}{5}+\mp@subsup{n}{}{6}
    2m+2m}\mp@subsup{m}{}{2}+\mp@subsup{m}{}{3}+\mp@subsup{m}{}{6
    {0,1,14, 130,700}
ln[5]:= Try[m^6 +m+2nm + nm(n-2), 6]
    -5n+14n+2}-19\mp@subsup{n}{}{3}+15\mp@subsup{n}{}{4}-6\mp@subsup{n}{}{5}+\mp@subsup{n}{}{6
    2m+2m}\mp@subsup{m}{}{2}+\mp@subsup{m}{}{3}+\mp@subsup{m}{}{6
    {0, 1, 14, 130, 700}
ln[[]:= Try[(n^2-n+1)nm(n^2-4n+5), 6]
    -5n+14n+2}-19\mp@subsup{n}{}{3}+15\mp@subsup{n}{}{4}-6\mp@subsup{n}{}{5}+\mp@subsup{n}{}{6
    2m+2m}\mp@subsup{m}{}{2}+\mp@subsup{m}{}{3}+\mp@subsup{m}{}{6
    {0,1, 14, 130, 700}
ln[7]:= Try[n(n-1)((n-1)^4-(n-1)^^3+(n-1)^2-(n-2)), 1]
    -5n+15n+2}-20\mp@subsup{n}{}{3}+15\mp@subsup{n}{}{4}-6\mp@subsup{n}{}{5}+\mp@subsup{n}{}{6
    m+m
    {0, 2, 66, 732, 4100}
ln[8]:= Try[2m^3-m,1]
    -1+5n-6n+2 + n 3
    -m+2 m
    {0,1, 14, 51, 124}
```

[5] How many ways can we dissect an octagon using 4 cuts, up to dihedral (rotations and flips) symmetry? Confirm your answer by drawing each of the possibilities. Which patterns are not chiral?

Dihedral group $G,|G|=168$ rotations, 8 flips striturn rotations:
O: All raw dissections $\frac{1}{k+1}\binom{n-3}{k}\binom{n+k-1}{k}$

$$
\begin{aligned}
& n=8 \\
& K=4
\end{aligned} \frac{1}{5}\binom{5}{4}\binom{11}{4}=\frac{11 \cdot 10.3 .9 \cdot 8}{4 \cdot 3 \cdot \% \cdot 1 \cdot 1}=330
$$

1,3,5,7: No dissections fixed by eight torn
2,6:

$4:$

2

Burnside's formula:

$$
1 / 16[330+\underbrace{2+2+10+2+2+2+2}_{22}+\underbrace{8+8+8+8}_{32}]=\frac{384}{16}=24
$$

The following 5 dissections are not chiral:

