Exam 3
Combinatorics, Dave Bayer, April 26 - May 1, 2023
Please show all of your work. You will be graded for both your answers and your explanations.
This test is open-book. You may use any resource such as my course materials, textbooks, or The On-Line Encyclopedia of integer Sequences. You may not receive help from another person.
[1] What is the chromatic polyomıal of the following graph?
deletion-contraction:

(each graph stands forits polynomial)

Direct case analysis:

$$
n\left[(n-1)^{3}+(n-1)^{2}(n-2)^{2}\right] \stackrel{n}{n}(x+1)[\underbrace{x^{3}+x^{2}(x-1)^{2}}_{x^{4}-x^{3}+x^{2}}]
$$

[2] Which topological surface is represented by the following gluing diagram?

non-onentable

Klein bottle
[3] How many ways can we place a pair of 1×2 markers on a 4×4 grid?

There are 24 possible positions for a 1×2 marker on a 4×4 board:

We want to count unordered pals of markers that do not overlap. There are $24.23=552$ ordered pairs of distinct markers, and $\binom{24}{2}=276$ unordered pair.
we want to subtract the pars that overlap.

First approach Count overlaps, depending on position of first marker. There are four cases:

$$
\begin{aligned}
& 8 \cdot 3+4 \cdot 4+8 \cdot 5+4 \cdot 6 \\
& \underbrace{24+16+40+24}_{104}
\end{aligned}
$$

$$
\underbrace{\substack{24.23-104) / 2 \\ 552-104}}_{448 / 2=224}
$$

Second approach
count possible configurations of unordered over lapping pairs

There are 9 positions for each of 4 rotations of an "elbow" overlap.

$$
9 \cdot 4=36
$$

There are 8 positions for each of 2 rotations of a "straight" overlap.

$$
8 \cdot 2=16
$$

$$
\left(\frac{24}{2}\right)-36-16=276-36-16=224
$$

[4] How many ways can the following diagram be filled in to complete a Young tableau?

Every Young tableau starts with a 1 in the upper left comer. Each way of completing this diagram with a 9 as shown corresponds to a Young tableau on the diagram with that cell removed.

For example:

So the count is given by the hook length formula for the diagram with this cell remqued.

$$
\begin{aligned}
& \frac{8!}{\pi r o c k ~ l e n g t s ~} \\
& \pi \text { hook lengths }
\end{aligned}
$$

[5] How many ways can we choose a pair of edges of a dodecahedron, up to rotational symmetry?

Using Burnside's lemma
There are 20 vertices, 30 edges, 12 faces $x=v-e+f=20-30+12=2$ (t) sphere
$|G|=20$ vertices $\times 3$ incident edges $=60$

Identity
1
(1)(1) \cdots (1)
(30)

Vertex: Vertex y_{3} turn

20
(3)(3) \cdots (3)

Edge: Edge $1 / 2$ turn
15
(1)(1) 2 "

15

Face: Face 1,2,3,4/5 turn 24
(5) $5(5)(5)(5$

0
0

$$
\begin{aligned}
& ((39)+15 \cdot 15) / 60=666 / 60=11 \\
& 435+225
\end{aligned}
$$

Check by direct count:

How many different edges can be paired with this first edge?

11

Tricky to decade which pair are the same. sometimes we see chivality.

