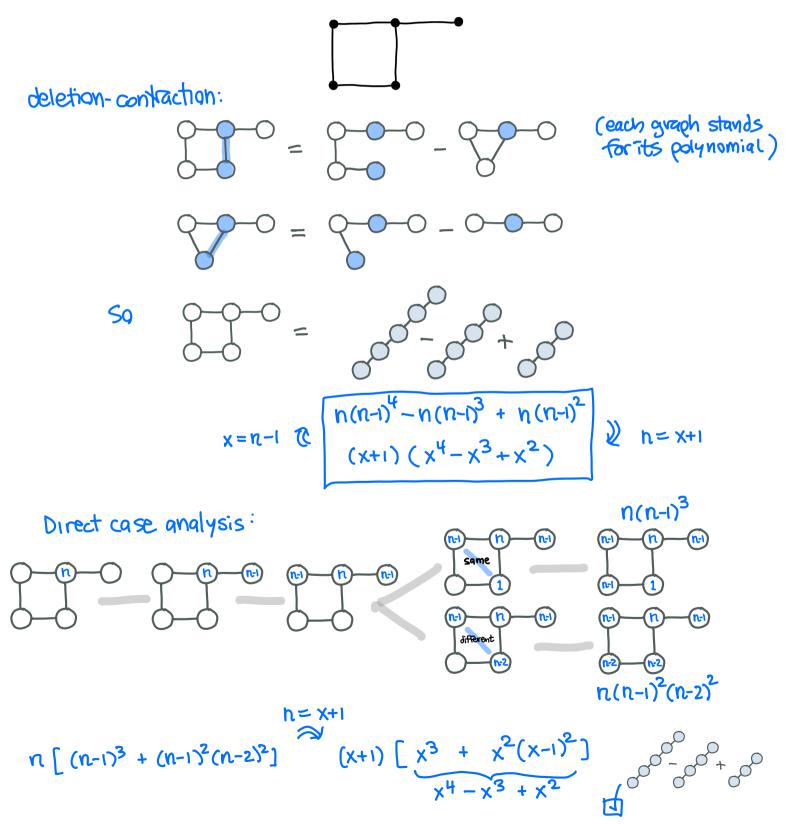
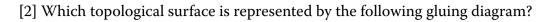
Combinatorics, Dave Bayer, April 26 - May 1, 2023

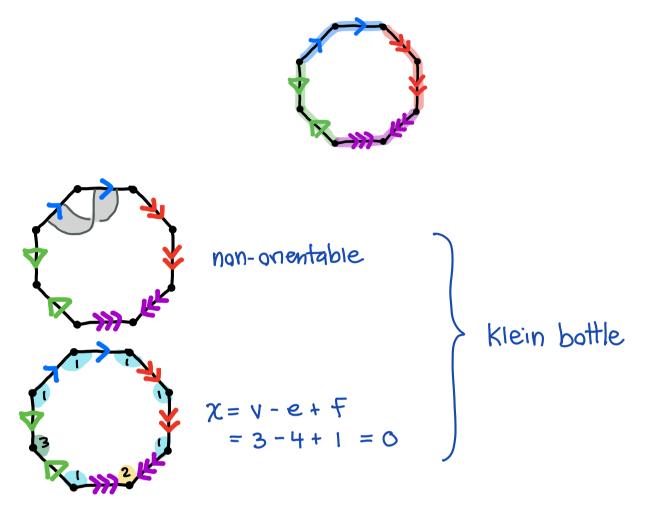
Please show all of your work. You will be graded for both your answers and your explanations.

This test is open-book. You may use any resource such as my course materials, textbooks, or *The On-Line Encyclopedia of integer Sequences*. You may not receive help from another person.

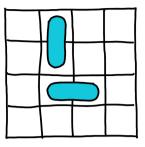
[1] What is the chromatic polyomial of the following graph?







[3] How many ways can we place a pair of 1×2 markers on a 4×4 grid?



There are 24 possible positions for a 1×2 marker on a 4×4 board:

\bigcap	\bigcap	\bigcap	\square
U	U	\cup	U

\bigcap	\bigcap	\bigcap	\bigcap
U	U	U	U

0	0	θ

\square	
\bigcirc	
$\left(\begin{array}{c} \\ \\ \end{array} \right)$	
\bigcirc	

		U	
	\subset	U	
	\square	Б	
		\bigcap	

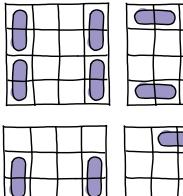
	\subset	\square
	\subset	\square
	\cup	\square

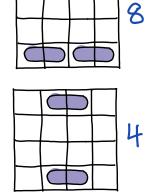
We want to count unordered pairs of markers that do not overlap. There are 24.23 = 552 ordered pairs of distinct markers, and $\binom{24}{2} = 276$ unordered pairs.

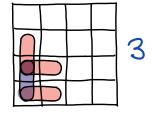
we want to subtract the pairs that overlap.

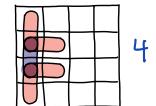
First approach) Count overlaps, depending on position of first marker.

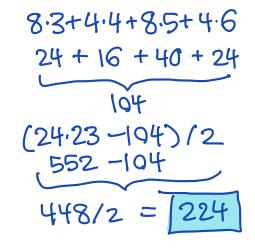
There are four cases:

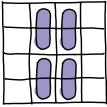


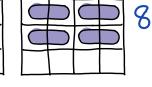




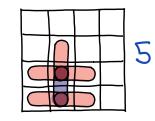






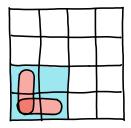


4

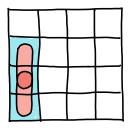


\square	O	U	6
	O	\square	
	U		

count possible configurations of unordered over lapping pairs



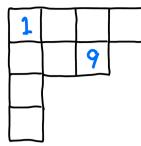
There are 9 positions for each of 4 ratations of an "elbow" overlap. 9.4 = 36



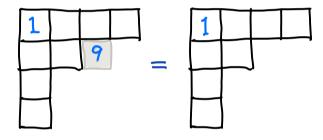
There are 8 positions for each of 2 ratations of a "straight" overlap. 8.2 = 16

$$(\frac{24}{2}) - 36 - 16 = 276 - 36 - 16 = 224$$

[4] How many ways can the following diagram be filled in to complete a Young tableau?



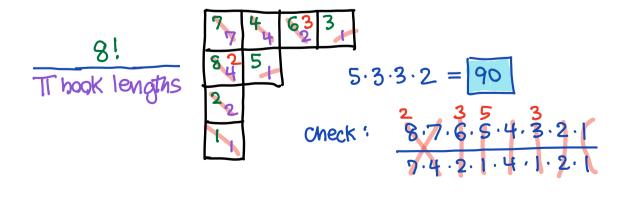
Every Young tableau starts with a 1 in the upper left corner. Each way of completing this diagram with a 9 as shown corresponds to a Young tableau on the diagram with that cell removed.



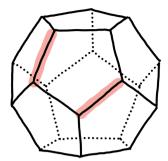
For example:

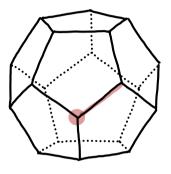
1 2 3 4 5 6 9	123 56	4	1 5 7 8 2 6 9	157	78	1368 259	1 3 6 8 2 5
7 8	7 8	2	3 =	34	>	4 = 7	4 7

So the count is given by the hook length formula for the diagram with this cell removed.



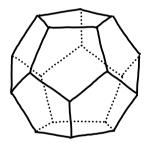
[5] How many ways can we choose a pair of edges of a dodecahedron, up to rotational symmetry?



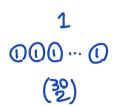


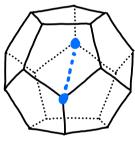
Using Burnside's lemma There are 20 vertices, 30 edges, 12 faces $\chi = v - e + F = 20 - 30 + 12 = 20$ sphere

[G] = 20 vertices × 3 incident edges = 60



Identity

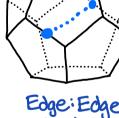




Vertex: Vertex V3 turn

20 33 ... 3

0

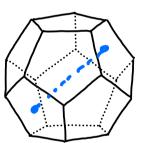


Edge: Edge 1/2 turn

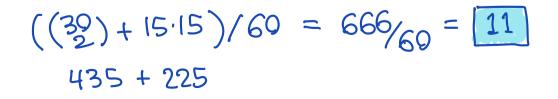
15

002~~2

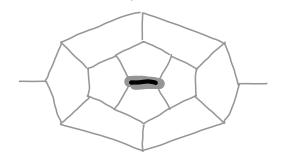
15



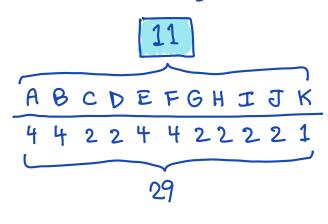
Face: Face 1,2,3,4 /5 turn 24 666666 0

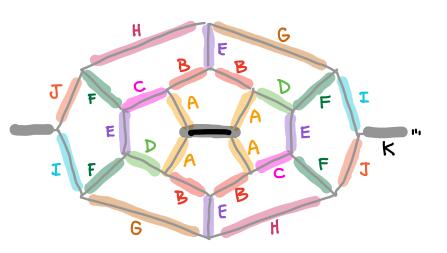


Check by direct count:



How many different edges can be paired with this first edge?





Tricky to decide which pails are the same.

Sometimes we see chivality.