Exam 2

Combinatorıcs, Dave Bayer, April 6-10, 2023
Please show all of your work. You will be graded for both your answers and your explanations. You need not complete the entire exam; some questions are intended to be challenging.

This test is open-book. You may use any resource such as my course materials, textbooks, or The On-Line Encyclopedia of integer Sequences. You may not receive help from another person.
[1] How many ways can we choose three vertices of an octagon, up to rotation?

[2] Which dissection of a polygon corresponds to this Young tableau, under Stanley's correspondence?

check:

[3] let $f(k)$ count the number of ways of coloring the squares of a 4×4 grid using at most k colors, up to the dihedral group D_{4} of rotations and reflections of the square. What is $f(2)$? What can you say about $\mathrm{f}(\mathrm{k})$?

1
16 choices

4 choices

4 千 8 choices

电 $\underbrace{2}$
10 choices

$$
f(k)=\left(k^{16}+2 k^{10}+3 k^{8}+2 k^{4}\right) / 8
$$

$$
(65536+2 \cdot 1024+3 \cdot 256+2 \cdot 16) / 8
$$

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	16	$\mathbf{1}$	65,536	$43,046,721$
$\mathbf{2}$	10	2	2,048	118,098
3	$\mathbf{8}$	3	768	19,683
2	4	2	32	162
		$\mathbf{1}$	$\mathbf{8 , 5 4 8}$	$\mathbf{5 , 3 9 8 , 0 8 3}$

$0,1,8548,5398083,537157696,19076074375,352654485156,4154189102413,35184646816768$,
n,
[4] Color the vertices of a cube using at most k colors, up to rotations of the cube. Let $f(k)$ count the number of chiral pairs: Mirror images that are not the same under rotation. What is $f(4)$? What can you say about $f(k)$?

orientation preserving (rotations)

orientation reversing

The above $1 s$ a brute force check of the 48 possibilities, to get an answer without really understanding the group.
These counts agree with the following more careful analysis:

Let $g(k)=\#$ colonigs using $\leq k$ colors, up to rotations
Let $h(k)=\#$ colorings using $\leq k$ colors, up to rotations and reflections
Then $f(k)=g(k)-h(k)=$ \# chiral pairs
Example: There is one chiral pair for $k=2$:
So $f(2)=g(2)-h(2)=1$
Rotations count these twice
Rotations and reflections count these once.

Let $G=$ group of rotations of cube
Let $H=$ group of rotations and reflections of cube

$$
|G|=8 \cdot 3=24
$$

8 ways to mark a vertex
3 ways to mark an edge

$$
|H|=2|G|=48 \quad G \subset H \quad H=G \cup \quad G h
$$

orientation
presenting reversing
The easiest way to understand H is to choose h
that swaps all antipodal corners.
This can be understood as three reflections, through each coordinate plane.

We now study each kind of rotation, alone and fallowed by swapping antipodes

	8		6	4
	2			
G	1		17	6
Sh		6	4	14
H	1	6	21	20

$$
\begin{aligned}
& g(k)=\left(k^{8}+17 k^{4}+6 k^{2}\right) / 24 \\
& h(k)=\left(k^{8}+6 k^{6}+21 k^{4}+20 k^{2}\right) / 48
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
& f(k)=\left(k^{8}-6 k^{6}+13 k^{4}-8 k^{2}\right) / 48 \\
& f(4)=920
\end{aligned}
$$

| | | 1 | 2 | 3 | 4 | 5 | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8 | 1 | 256 | 6561 | 65536 | 390625 | | |
| 17 | 4 | 17 | 272 | 1377 | 4352 | 10625 | | |
| 6 | 2 | 6 | 24 | 54 | 96 | 150 | | |
| | | 1 | 23 | 333 | 2916 | 16725 | $1,23,333,2916,16725$ | A000543 |
| 6 | 6 | 6 | 384 | 4374 | 24576 | 93750 | | |
| 4 | 4 | 4 | 64 | 324 | 1024 | 2500 | | |
| 14 | 2 | 14 | 56 | 126 | 224 | 350 | | |
| | | 1 | 22 | 267 | 1996 | 10375 | $1,22,267,1996,10375$ | A128766 |
| | | 0 | 1 | 66 | 920 | 6350 | $0,1,66,920,6350$ | A337896 |

[5] Let $f(p)$ count the number of ways of coloring a p bead necklace using at most 3 interchangeable colors, up to rotation. In other words, we're partitioning the beads into up to 3 unnamed subsets, up to rotation. As shown, $f(2)=2$ and $f(3)=3$. What is $f(5)$? What can you say about $f(p)$, when p is prime?

The primes $p=2,3$ are special cases because 2 and 3 divide 6, the order of the permutation group S_{3} interchanging the colors. For prime $p \geq 5$, the group $C_{p} \times S_{3}$ has order 6ρ, with fixed points

$$
\text { so for prime } p \geq 5, \quad \begin{aligned}
& f(p)= {\left[3^{p}+3 p+3(p-1)\right] / 6 p } \\
& f(5)=\left[\begin{array}{c}
5 \\
\left.3^{5}+3.5+3.4\right] / 30=9 \\
2431512
\end{array}\right.
\end{aligned}
$$

5

