Exam 2

Combinatorics, Dave Bayer, April 6-10, 2023

Please show all of your work. You will be graded for both your answers and your explanations. You need not complete the entire exam; some questions are intended to be challenging.

This test is open-book. You may use any resource such as my course materials, textbooks, or *The On-Line Encyclopedia of integer Sequences*. You may not receive help from another person.

[1] How many ways can we choose three vertices of an octagon, up to rotation?

[2] Which dissection of a polygon corresponds to this Young tableau, under Stanley's correspondence?

$\bigcirc \bigcirc \bigcirc \bigcirc$

[3] let f(k) count the number of ways of coloring the squares of a 4×4 grid using at most k colors, up to the dihedral group D₄ of rotations and reflections of the square. What is f(2)? What can you say about f(k)?

(65536 + 2.1024 + 3.256 + 2.16)/g

		1	2	3
1	16	1	65,536	43,046,721
2	10	2	2,048	118,098
3	8	3	768	19,683
2	4	2	32	162
		1	8,548	5,398,083

A217338 Number of inequivalent ways to color a 4 X 4 checkerboard using at most n colors allowing rotations and reflections.

0, 1, 8548, 5398083, 537157696, 19076074375, 352654485156, 4154189102413, 35184646816768,

[4] Color the vertices of a cube using at most k colors, up to rotations of the cube. Let f(k) count the number of *chiral pairs*: Mirror images that are not the same under rotation. What is f(4)? What can you say about f(k)?

6

The above is a brute force check of the 48 possibilities, to get an answer without really understanding the group. These counts agree with the following more careful analysis:

We now study each kind of rotation, alone and followed by swapping antipodes

		1	2	3	4	5		
1	8	1	256	6561	65536	390625		
17	4	17	272	1377	4352	10625		
6	2	6	24	54	96	150		
		1	23	333	2916	16725	1,23,333,2916,16725	A000543
6	6	6	384	4374	24576	93750		
4	4	4	64	324	1024	2500		
14	2	14	56	126	224	350		
		1	22	267	1996	10375	1,22,267,1996,10375	A128766
		0	1	66	920	6350	0,1,66,920,6350	A337896

[5] Let f(p) count the number of ways of coloring a p bead necklace using at most 3 interchangeable colors, up to rotation. In other words, we're partitioning the beads into up to 3 unnamed subsets, up to rotation. As shown, f(2) = 2 and f(3) = 3. What is f(5)? What can you say about f(p), when p is prime?

The primes p=2,3 are special cases because 2 and 3 divide 6, the order of the permutation group S_3 interchanging the colors. For prime $p \ge 5$, the group $C_p \times S_3$ has order 6p, with fixed points S_2

so for prime $p \ge 5$,

 $f(p) = [3^{p} + 3p + 3(p-1)]/6p$ $f(5) = [3^{5} + 3\cdot 5 + 3\cdot 4]/30 = 9$ $\frac{243}{15} = \frac{12}{12}$

