Exam 2

Combinatorics, Dave Bayer, April 6-10, 2023
Please show all of your work. You will be graded for both your answers and your explanations. You need not complete the entire exam; some questions are intended to be challenging.

This test is open-book. You may use any resource such as my course materials, textbooks, or The On-Line Encyclopedia of integer Sequences. You may not receive help from another person.
[1] How many ways can we choose three vertices of an octagon, up to rotation?

[2] Which dissection of a polygon corresponds to this Young tableau, under Stanley's correspondence?

[3] let $f(k)$ count the number of ways of coloring the squares of a 4×4 grid using at most k colors, up to the dihedral group D_{4} of rotations and reflections of the square. What is $f(2)$? What can you say about $\mathrm{f}(\mathrm{k})$?

[4] Color the vertices of a cube using at most k colors, up to rotations of the cube. Let $f(k)$ count the number of chiral pairs: Mirror images that are not the same under rotation. What is $f(4)$? What can you say about $f(k)$?

[5] Let $f(p)$ count the number of ways of coloring a p bead necklace using at most 3 interchangeable colors, up to rotation. In other words, we're partitioning the beads into up to 3 unnamed subsets, up to rotation. As shown, $f(2)=2$ and $f(3)=3$. What is $f(5)$? What can you say about $f(p)$, when p is prime?

