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Problems

1. Evaluate ∫
0≤y≤x

e−x
2−y2

dxdy.

2. Suppose that we have 5 points on the unit 2-sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
Show that there is a closed half-sphere (one half of the sphere bounded by a great circle)
that contains at least 4 of these points.

3. Let f : R → R (R = real number) and suppose f(0) = 0, f(1) = 1 and f(x + y) =
f(x) + f(y) for all x, y. Must f(x) = x for all x?

4. Show that 31,275,407 cannot be written as the sum of three perfect squares.

5. If 2n − 1 is prime, show n is prime.

6. If A is a 3× 2 matrix and B is a 2× 3 matrix, then AB is not equal to I.

7. Let p(x) be a polynomial with integer coefficients. Let A = (a1, a2), B = (b1, b2) be
two points (where a1, a2, b1, b2 are integers) that lie on the curve y = p(x). Assume that
the distance between A and B is an integer. Show that the line passing through A and B
is parallel to the x-axis.

8. Which number is larger, eπ or πe?

9. Let Mn be the set of n× n real matrices. For n > m, show that there is no bijection
f : Mn →Mm such that f(X)f(Y ) = f(XY ) for all X,Y ∈Mn.

10. The ellipse 9x2 +y2 = 9 has the following two parametrizations by an angle in [0, 2π):
The first is by the polar coordinate θ of the point (x, y), and the second is by the angle φ
satisfying x = cos(φ), y = 3 sin(φ). Find the maximum value of the difference θ − φ.

11. Show that the only positive integer solutions of xy = yx with x 6= y are (x, y) = (2, 4)
and (4, 2).

12. Let F = C(x) denote the field of rational functions over the complex numbers in one
variable x. Find all the automorphisms of F which fix C


