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Mathematics Prize Exam
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1. Let f be a smooth function defined on (−∞,∞) satisfying f ′′(x) =
xf(x), f(0) = 0 and f ′(0) = 1. Show that f is positive on (0,∞). What is
the limit of f as x approaches ∞?

2. Show that the maximum and minimum of ax2 + 2bxy + cy2 on the unit

circle x2 + y2 = 1 are the eigenvalues of the matrix
[

a b
b c

]
.

3. Consider a point P inside a regular n-gon. Let d1, . . . dn be the distances
from P to the lines which define the sides of the n-gon. Show that d1 +
d2 + . . . + dn is independent of the choice of P .

4. A triangle in the plane has side lengths a, b, c. Its vertices all lie on a
circle of diameter d. Show that the area of the triangle is abc

2d .

5. What is the convex hull of the graph of y = x3? (The convex hull of a
set is the smallest convex set containing the given set.)

6. Consider the 3 × 3 matrices with entries in Z/2. How many have
multiplicative inverses?

7. Which rectangles can be tiled by 5× 7 and 7× 5 rectangles?

8. What is the greatest common factor of all values of

(x− 2)(x− 1)2x3(x + 1)2(x + 2), x an integer?

9. Show that if a and b are between −1010 and 1010 and not both 0, then
|a + b

3√
2| > 10−100. You may assume that

3√
2 is irrational.

End of Exam


