Exam 1

Linear Algebra, Dave Bayer, February 11, 2014

Delutions					Uni:	
[1]	[2]	[3]	[4]	[5]	Total	
	ری ا 0د [1]					

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.

[1] Using matrix multiplication, count the number of paths of length six from w to z.

[2] Solve the following system of equations.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \\ 3 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} w \\ y \\ y \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$
particular solution:
$$\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
Iast three cols of matrix.

So,
$$\begin{bmatrix} w \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
homogeneous solutions: 3 rows are independent, so matrix rank: 3, so expect 4-3=1 dim homogsolu.

Find One vetor:
$$\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
Check:
$$\begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{1}{3} \\ -1 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{1}{3} \\ -1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{2} \end{bmatrix} t = \begin{bmatrix} 3 \\ 3 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} t = \begin{bmatrix} 3 \\ 3 \\ 1 \\ 1 \end{bmatrix} 0$$

[3] Express A as a product of elementary matrices, where

[4] Find a system of equations having as solution set the following affine subspace of $\mathbb{R}^4.$

$$\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} \quad \text{rank } 2 = \dim 2.$$

expect 2 equs
$$4 - 2 = 2$$

check:

$$= \begin{bmatrix} -1 \\ -2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

VnW

[5] Find the intersection of the following two affine subspaces of \mathbb{R}^4 .

$$\bigvee : \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\bigotimes : \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$$

equis for V:
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w \\ y \\ z \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ z \end{bmatrix}$$

$$p \log m W: \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 5 \\ 4 \\ 3 \\ 2 \end{pmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 3 \\ 2 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$
$$c \operatorname{heck} \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \notin$$