Exam 1
Linear Algebra, Dave Bayer, February 11, 2014

Name:
solutions
Uni: \qquad

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] Using matrix multiplication, count the number of paths of length six from w to z.

20 paths

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{lll}
1 & & \\
2 & 1 & \\
1 & 2 & 1 \\
& 1 & 2
\end{array}\right] \\
& A^{4}=\left[\begin{array}{llll}
1 & & 1 & \\
4 & 4 & 1 \\
6 & 6 & 4 & 1
\end{array}\right]
\end{aligned}
$$

(Pascal's tangle)

orly need thusenty, but
want to see ore pattern.
$2 D=\left(\frac{6}{3}\right)=$ ways to choose 3 objects from set of 6 objects.
" $\frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1}$ Pascal's triangle.
S9, why? Each path is 3 steps 1 and 3 steps \rightarrow

$$
2 D=\left(\frac{6}{3}\right) \text { ways to choose which steps ave } \rightarrow \text { not } \Omega
$$

[2] Solve the following system of equations.

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
3 & 2 & 1 & 0 \\
3 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]
$$

particular solution: $\left[\begin{array}{l}3 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}b \\ 0\end{array}\right]$,
last three c cols of matrix.
so, $\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$
homogeneous solutions: 3 rows are independent, somatrx rants 3 , so expect $4-3=1$ dim homogsolu.
Find one vefor: $\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right]=3\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+3\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
foreedby us middecring
lastenivy
check $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \\ 3 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{c}1 \\ -3 \\ 3 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ last

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
-3 \\
3 \\
-1
\end{array}\right] t
$$

check:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
3 & 2 & 1 & 0 \\
3 & 1 & 0 & 0
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
-3 \\
3 \\
-1
\end{array}\right] t\right)=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]+\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] t=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right] \sigma
$$

[3] Express A as a product of elementary matrices, where

[4] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.

$$
\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

rank $2=\operatorname{dim} 2$ expect 2 equs

$$
4-2=2
$$

(1) $\left[\begin{array}{cccc}\left.\begin{array}{cccc}1 & -1 & -1 & 0 \\ 0 & -1 & -1 & 1\end{array}\right]\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]=0$
(2) $\left.\left[\begin{array}{cccc}1 & -1 & -1 & 0 \\ 0 & -1 & -1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}-1 \\ -2\end{array}\right]\right\}$ find this

$$
\left[\begin{array}{cccc}
1 & -1 & -1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]
$$

check:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & -1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
t
\end{array}\right]\right)} \\
& \quad=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
5 \\
t
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] \sigma
\end{aligned}
$$

[5] Find the intersection of the following two affine subspaces of \mathbb{R}^{4}.

$$
\begin{aligned}
& {\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]} \\
& W:\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
4 \\
3 \\
2
\end{array}\right]+\left[\begin{array}{ll}
2 & 2 \\
2 & 2 \\
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
c \\
d
\end{array}\right] \\
& \text { ecus for } V \text { : }\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \text { pug in w: }\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left(\left[\begin{array}{l}
5 \\
4 \\
3 \\
2
\end{array}\right]+\left[\begin{array}{ll}
2 & 2 \\
2 & 2 \\
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
c \\
j
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{l}
3 \\
2
\end{array}\right]+\left[\begin{array}{l}
12 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
d
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 2 \\
0
\end{array}\right]\left[\begin{array}{c}
c \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1
\end{array}\right]} \\
& \Leftarrow\left[\begin{array}{l}
c \\
j
\end{array}\right]=\left[\begin{array}{l}
0 \\
-1
\end{array}\right] \\
& \text { break }\left[\begin{array}{l}
3 \\
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

