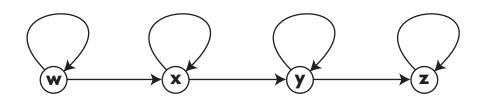
Exam 1

Linear Algebra, Dave Bayer, February 11, 2014

[1] Using matrix multiplication, count the number of paths of length six from *w* to *z*.



[2] Solve the following system of equations.

$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \\ 3 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$
--

[3] Express A as a product of elementary matrices, where

$$A = \begin{bmatrix} 4 & 3 & 6 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

[4] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^4 .

[w]		$\lceil 1 \rceil$		[1	1	
x		1		1	0	[s]
y z	=	1	+	0	1	$\begin{bmatrix} s \\ t \end{bmatrix}$
$\lfloor z \rfloor$		0		1	1	

[5] Find the intersection of the following two affine subspaces of \mathbb{R}^4 .

$$\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$$