Practice Problems

Linear Algebra, Dave Bayer, February 12, 2011
These are supplemental practice problems for our first exam.
[1] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
3 \\
4 \\
1 \\
0
\end{array}\right]+\mathrm{t}\left[\begin{array}{l}
5 \\
6 \\
0 \\
1
\end{array}\right]
$$

[2] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]+\mathrm{t}\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right]
$$

[3] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+s\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]+\mathrm{t}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

[4] Find the intersection of the following two affine subspaces of \mathbb{R}^{4}.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]}
\end{aligned}
$$

[5] Find the intersection of the following two affine subspaces of \mathbb{R}^{4}.

$$
\begin{gathered}
{\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right]+\mathrm{s}\left[\begin{array}{c}
-2 \\
3 \\
0 \\
-1
\end{array}\right]+\mathrm{t}\left[\begin{array}{c}
-1 \\
0 \\
3 \\
-2
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]}
\end{gathered}
$$

[6] Find the intersection of the following two affine subspaces of \mathbb{R}^{4}.

$$
\begin{gathered}
{\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
6
\end{array}\right]} \\
{\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
0 \\
0
\end{array}\right]+\mathrm{s}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+\mathrm{t}\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]}
\end{gathered}
$$

[7] Find the intersection of the following two affine subspaces of \mathbb{R}^{4}.

$$
\begin{aligned}
& {\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right]+\mathrm{s}\left[\begin{array}{c}
-2 \\
3 \\
0 \\
-1
\end{array}\right]+\mathrm{t}\left[\begin{array}{c}
-1 \\
0 \\
3 \\
-2
\end{array}\right]} \\
& {\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
0 \\
0
\end{array}\right]+\mathrm{s}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+\mathrm{t}\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

