Final Exam

Linear Algebra, Dave Bayer, Section 003, May 14, 2013

Name:						Uni:			
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.

[1] Find the intersection of the following two affine subspaces of \mathbb{R}^4 .

$$\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

[2] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 which projects orthogonally onto the line

x = y = z

Find the matrix A which represents L in standard coordinates.

[3] Let V be the vector space of all polynomials f(x) of degree ≤ 2 in the variable x with coefficients in \mathbb{R} . Let W be the subspace of V consisting of those polynomials satisfying f(0) = 0. Find an orthogonal basis for W with respect to the inner product

$$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$

[4] Find the eigenvalues and corresponding eigenvectors of the matrix

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & 2 \end{bmatrix}$$

[5] Find e^{At} where A is the matrix

$$\mathsf{A} \;=\; \left[\begin{array}{cc} 4 & 1 \\ -4 & 0 \end{array} \right]$$

[6] Find e^{At} where A is the matrix

$$A \;=\; \left[\begin{array}{cc} 1 & -3 \\ -4 & 0 \end{array} \right]$$

[7] Find e^{At} where A is the matrix

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -2 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

[8] Express

$$x^{2} + y^{2} + z^{2} - 2xy + 2xz + 2yz$$

as a linear combination of squares of orthogonal linear forms.