Final Exam

Linear Algebra, Dave Bayer, May 10, 2011

Name: _____

[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	[5] (5 pts)	[6] (5 pts)	[7] (5 pts)	[8] (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.

[1] By least squares, find the equation of the form y = ax + b which best fits the data

$\int x_1$	y1]	Γ	0	1]
χ_2	y_2	=	1	1
x_3	y ₃		3	2

[2] Extend the vector (1,1,1,2) to an orthogonal basis for \mathbb{R}^4 .

[3] Find the orthogonal projection of the vector (1,0,0,0) onto the subspace of \mathbb{R}^4 spanned by the vectors (1,1,1,0) and (0,1,1,1).

[4] Find the matrix A which projects \mathbb{R}^4 orthogonally onto the subspace spanned by the vectors (1,1,1,1) and (1,1,2,2).

[5] Find the eigenvalues and corresponding eigenvectors of the matrix

$$\mathsf{A} = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$

[6] Find the matrix exponential e^{At} , for the matrix

$$\mathsf{A} = \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix}$$

[7] Find the matrix exponential e^{At} , for the matrix

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$

[8] Find a formula for A^n , for the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$