Exam 2

Linear Algebra, Dave Bayer, March 29, 2011

Name: _____

[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	[5] (5 pts)	[6] (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.

[1] Find a basis for the rowspace of the following matrix. Extend this basis to a basis for all of \mathbb{R}^4 .

3	2	1	0
1	1	1	1
0	1	2	3

[2] Find the determinant of each of the following matrices.

[1	2	3	4	[4	a	b	с	d	1	2	3	4
0	3	4	5		a	$\mathfrak{b}+1$	с	d	1	4	3	4
0	0	1	3		a	b	c + 1	d	1	2	6	4
0	0	2	9	L La	a	b	с	d + 1	1	2	3	8

[3] Find the inverse of the following matrix.

[1	0	0	0]
a b	1	0	c
b	0	1	d
0	0	0	1

[4] Let

$$v_1 = (1,0,0), v_2 = (1,1,0), v_3 = (0,1,1)$$

Let $L:\mathbb{R}^3\to\mathbb{R}^3$ be a linear map such that

$$L(v_1) = v_2,$$
 $L(v_2) = v_3,$ $L(v_3) = v_1,$

Find the matrix A (in standard coordinates) which represents the linear map L.

[5] Find the ratio x/y for the solution to the matrix equation

$$\begin{bmatrix} a & d & 1 \\ b & e & 1 \\ c & f & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

[6] Find the determinant of the following 5×5 matrix. What is the determinant for the $n \times n$ case?

$$\begin{bmatrix} \mathbf{x} & \mathbf{x}^2 & 0 & 0 & 0 \\ 1 & \mathbf{x} & \mathbf{x}^2 & 0 & 0 \\ 0 & 1 & \mathbf{x} & \mathbf{x}^2 & 0 \\ 0 & 0 & 1 & \mathbf{x} & \mathbf{x}^2 \\ 0 & 0 & 0 & 1 & \mathbf{x} \end{bmatrix}$$