

Name:

[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	[5] (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages. Do not use calculators or decimal notation.

[1] Use Cramer's rule to solve for *z* in the system of equations

a	1	0]	[x]		[1]
1	a	1	x y z	=	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
0	1	a	$\lfloor z \rfloor$		$\lfloor 1 \rfloor$

[2] Find a basis for the subspace V of \mathbb{R}^4 defined by the following system of equations. Extend this basis to a basis for all of \mathbb{R}^4 .

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

[3] Find a 3 \times 3 matrix A such that

$$A\begin{bmatrix}1\\1\\0\end{bmatrix} = \begin{bmatrix}1\\1\\0\end{bmatrix}, \quad A\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}2\\2\\2\end{bmatrix}, \quad A\begin{bmatrix}0\\1\\1\end{bmatrix} = \begin{bmatrix}0\\3\\3\end{bmatrix}$$

[4] Find the characteristic polynomial, and a system of eigenvalues and eigenvectors, for the matrix

$$\mathsf{A} = \begin{bmatrix} 1 & 1 \\ 6 & 0 \end{bmatrix}$$

[5] For each of the following matrices, find the determinant. What is the general pattern?

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$