

Second Midterm

Linear Algebra, Dave Bayer, March 29, 2005

Name: _

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.

[1] Let A be the matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 2 & 3 & 5 \\ 1 & 1 & 2 & 3 & 5 & 8 \\ 1 & 2 & 3 & 5 & 8 & 13 \\ 1 & 3 & 5 & 8 & 13 & 21 \end{bmatrix}.$$

Compute the row space and column space of A.

[**2**] Let

$$\mathbf{v}_1 = (1,1,0,1), \ \mathbf{v}_2 = (1,0,-1,0), \ \mathbf{v}_3 = (1,-3,0,-1), \ \mathbf{v}_4 = (0,1,-1,0), \ \mathbf{v}_5 = (0,1,1,1).$$

Find a basis for the subspace $V \subset \mathbb{R}^4$ spanned by \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , and \mathbf{v}_5 . Extend this basis to a basis for \mathbb{R}^4 .

[3] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Find a basis for the subspace W defined by

$$f(1) = f'(1) = 0.$$

Extend this basis to a basis for V.

[4] Let $\mathbf{v}_1=(1,1)$ and $\mathbf{v}_2=(1,2)$. Let $L:\mathbb{R}^2\to\mathbb{R}^2$ be the linear transformation such that

$$L(\mathbf{v}_1) = \mathbf{v}_1 + 2\mathbf{v}_2, \quad L(\mathbf{v}_2) = \mathbf{v}_1 + \mathbf{v}_2.$$

Find a matrix that represents L with respect to the usual basis $\mathbf{e}_1 = (1,0)$, $\mathbf{e}_2 = (0,1)$.

Problem:		