

Name: _

[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.

[1] Find an orthogonal basis for the subspace V of \mathbb{R}^5 spanned by the vectors

(1, 0, -1, 0, 1), (1, 0, 0, -1, 1), (0, 1, -1, 0, 1), (0, 1, 0, -1, 1).

answer:

[2] By least squares, find the equation of the form y = ax + b which best fits the data

 $(x_1, y_1) = (-1, 0), \quad (x_2, y_2) = (0, 0), \quad (x_3, y_3) = (0, 2), \quad (x_4, y_4) = (1, 1).$

answer:

[3] Find (s,t) so	$\begin{bmatrix} 1\\1\\0\\0\\-1 \end{bmatrix} \begin{bmatrix} s\\t \end{bmatrix} \text{ is as } 0$	close as possible to $\begin{bmatrix} 1\\0\\-1\\0\\1\end{bmatrix}$	
------------------------------	--	--	--

[4] Let
$$A = \begin{bmatrix} 5 & 2 \\ 3 & 4 \end{bmatrix}$$
. Write A as CDC^{-1} for a diagonal matrix D.

[5] Let
$$A = \begin{bmatrix} -1 & 2 & -2 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
. Write A as CDC^{-1} for a diagonal matrix D.

[6] Let
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 3 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

[7] Let
$$A = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 6 & -3 & 2 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

Problem: _____

Problem: _____

Problem: _____