Test 1

[Reserved for Score]

Name \qquad Uni \qquad
[1] Find the general solution to the following system of equations.

$$
\left[\begin{array}{lllll}
0 & 0 & 3 & 1 & 2 \\
1 & 0 & 4 & 1 & 5
\end{array}\right]\left[\begin{array}{c}
v \\
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

$$
\left[\begin{array}{c}
v \\
w \\
x \\
y \\
z
\end{array}\right]=
$$

Test 1

test1b3p2
[2] Find the intersection of the following two affine subspaces of \mathbb{R}^{4}.

$$
\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{q} \\
\mathrm{r}
\end{array}\right], \quad\left[\begin{array}{c}
w \\
\mathrm{x} \\
\mathrm{y} \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{s} \\
\mathrm{t}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=
$$

Test 1

[3] Consider \mathbb{R}^{3} equipped with the inner product

$$
\langle(a, b, c),(d, e, f)\rangle=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]
$$

Using this inner product, find the orthogonal projection of the vector $(6,6,6)$ onto the plane spanned by $(1,0,0)$ and $(0,0,1)$.

Test 1

[4] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-4 & 1 \\
-1 & -2
\end{array}\right]
$$

F18 Homework 3 Problem 5
Linear Algebra, Dave Bayer

Test 1

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Test 1

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
1 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Test 1

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Test 1

[8] Express the quadratic form

$$
-2 x^{2}-2 x y-3 y^{2}+2 x z-3 z^{2}
$$

as a sum of squares of othogonal linear forms.

