Name \qquad Uni
[1] Find a basis for the subspace V of \mathbb{R}^{4} spanned by the vectors
$(1,1,0,1)$
$(1,0,1,1)$
$(2,1,1,2)$
$(3,2,1,3)$
$(3,1,2,3)$
$(4,2,2,4)$

Extend this basis to a basis for \mathbb{R}^{4}.

Test 1

Name \qquad Uni \qquad
[1] By least squares, find the equation of the form $y=a x+b$ that best fits the data

$$
\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]=\left[\begin{array}{rr}
-1 & 1 \\
0 & 0 \\
1 & 1 \\
2 & 1
\end{array}\right]
$$

$$
y=\square x+\square
$$

[4] Find the 4×4 matrix that projects orthogonally onto the plane spanned by the vectors ($1,0,1,0$) and ($0,1,0,1$).

Test 1

Name \qquad Uni \qquad
[1] Find the determinant of the matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 3 & 3 \\
0 & 1 & 1 & 5 & 5 \\
2 & 2 & 2 & 2 & 2 \\
0 & 1 & 1 & 1 & 7
\end{array}\right]
$$

$$
\operatorname{det}(A)=\square
$$

Test 1

[2] Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
5 & 2 & 1 \\
3 & 1 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

(Do not write a negative denominator.)

Test 1

[3] Using Cramer's rule, solve for y in the system of equations

$$
\left[\begin{array}{lll}
\mathrm{a} & 1 & 2 \\
\mathrm{~b} & 1 & 1 \\
\mathrm{c} & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]
$$

$$
y=\frac{(\square) a+(\square) b+(\square) c}{(\square) a+(\square) b+(\square) c}
$$

Test 1
[4] Let $f(n)$ be the determinant of the $n \times n$ matrix in the sequence

$$
[2] \quad\left[\begin{array}{ll}
2 & 5 \\
1 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 5 & 0 \\
1 & 2 & 5 \\
0 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 5 & 0 & 0 \\
1 & 2 & 5 & 0 \\
0 & 1 & 2 & 5 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Find $f(1)$ and $f(2)$. Find a recurrence relation for $f(n)$. Find $f(6)$.

$$
\begin{gathered}
f(1)=\square \\
f(n)=(2)=\square \\
f(6)=
\end{gathered}
$$

Linear Algebra, Dave Bayer
[2] Find the 3×3 matrix A such that

$$
A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad A\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right], \quad A\left[\begin{array}{r}
0 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{r}
0 \\
1 \\
-2
\end{array}\right]
$$

Test 1

[3] Consider \mathbb{R}^{3} equipped with the inner product

$$
\langle(a, b, c),(d, e, f)\rangle=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]
$$

Using this inner product, find the orthogonal projection of the vector $(3,3,3)$ onto the plane spanned by $(1,0,0)$ and $(0,1,0)$.

Test 1

[3] Consider \mathbb{R}^{3} equipped with the inner product

$$
\langle(a, b, c),(d, e, f)\rangle=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]
$$

Using this inner product, find the orthogonal projection of the vector $(2,2,2)$ onto the plane spanned by $(1,0,1)$ and $(0,1,1)$.

