

Final Exam

Linear Algebra, Dave Bayer, December 22, 2022

Name: ______ Uni: _____

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.

[1] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^4 .

$$\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix} t$$

			11	$\lceil w \rceil$		Γ()
				x		
ļ	Д	<u> </u>		u	=	
			·····			

[2] Find the 3×3 matrix A that projects \mathbb{R}^3 orthogonally onto the hyperplane x + y + 3z = 0.

[3] Find the 3×3 matrix A that projects \mathbb{R}^3 orthogonally onto the plane x+y+z=0, with respect to the inner product

$$<(a,b,c),\;(r,s,t)> \quad = \quad \left[\begin{array}{cccc} a & b & c \end{array} \right] \left[\begin{array}{cccc} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 1 \end{array} \right] \left[\begin{array}{c} r \\ s \\ t \end{array} \right]$$

$$A = \frac{1}{\Box} \begin{bmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \end{bmatrix}$$

[4] Find A^n where A is the matrix

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}$$

$$A^{n} = \left[\begin{array}{c} \\ \\ \end{array}\right] + \left[\begin{array}{c} \\ \\ \end{array}\right]$$

[5] Solve the differential equation y' = Ay where

$$A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$$
, $y(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$y = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

[6] Find e^{At} where A is the matrix

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

[7] Find e^{At} where A is the matrix

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$e^{\mathbf{At}} = \left[\begin{array}{c} \\ \\ \\ \end{array}\right] + \left[\begin{array}{c} \\ \\ \end{array}\right] + \left[\begin{array}{c} \\ \\ \end{array}\right] + \left[\begin{array}{c} \\ \\ \end{array}\right]$$

[8] Express the quadratic form

$$-2x^2 - 2xy - 3y^2 - 2xz - 3z^2$$

as a sum of squares of orthogonal linear forms.

$$\left(\left(\right) \right)^2 + \left(\left(\right) \right)^2 + \left(\left(\right) \right)^2$$