Final Exam
Linear Algebra, Dave Bayer, December 16, 2022

Name: \qquad Uni: \qquad

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.

$$
\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right] \mathrm{t}
$$

$$
\left[\begin{array}{c:c:c}
2 & -3 & 0 \\
\hline 1 & 0 & -3 \\
0 & 0 & 0 \\
\hline & 1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-6 \\
3
\end{array}\right]
$$

check:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
2 & -3 & 0 & 0 \\
1 & 0 & -3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } & {\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right] t} \\
\downarrow
\end{array}\right] } \\
& {\left[\begin{array}{c}
-3 \\
-6 \\
3
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] t }
\end{aligned}
$$

There are many possible answers. A foll rank answer that checks is correct.
[2] Find the 3×3 matrix A that projects \mathbb{R}^{3} orthogonally onto the plane $x+y+2 z=0$.
(Taken from 10:10 Exam $2[4]$)

$$
A=\frac{1}{6}\left[\begin{array}{ccc}
5 & -1 & -2 \\
-1 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right]
$$

$$
\underbrace{x+y+2 z}_{(1,1,2) \cdot(x, y, z)}=0
$$

$A+B=I, B$ projects into normal vector $(1,1,2)$

$$
\begin{aligned}
& (x, y, 2) \stackrel{B}{\longmapsto} \frac{(x, y, 2) \cdot(1,1,2)}{(1,1,2) \cdot(1,1,2)}(1,1,2) \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \stackrel{B}{\longrightarrow}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right] / 6=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right] / 6} \\
& A=I-B=\left[\begin{array}{lll}
6 & \\
& 6 & \\
& 6
\end{array}\right]-\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right] / 6=\left[\begin{array}{ccc}
5 & -1 & -2 \\
-1 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right] / 6
\end{aligned}
$$

check:
［3］Find the 3×3 matrix A that projects \mathbb{R}^{3} orthogonally onto the plane $x+y+z=0$ ，with respect to the inner product

$$
<(a, b, c),(r, s, t)\rangle=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
r \\
s \\
t
\end{array}\right]
$$

（Taken from 8：40 Exam 2 ［5］）

$$
A=\frac{1}{2}\left[\begin{array}{cccc}
0 & -2 & -2 \\
1 & 3 & 1 \\
-1 & -1 & 1
\end{array}\right]
$$

$(1,1,1)$ is normal to $x+y+z=0$ using the usual dot product．
It is nat normal to the plane using this inner product．
well still use $A=I-B$ but we need to first find the normal．

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]}_{\text {two vectors }}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
4 \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad(2,-1,1) \\
& \begin{array}{l}
\text { in plane } \\
\text { looks fumsliar for a reason }
\end{array} \\
& \langle(x, y, z),(2-1,1)\rangle=\left[\begin{array}{lll}
2-1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \\
& \langle(2,-1,1),(2-1,1)\rangle=\left[\begin{array}{lll}
2 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=2 \\
& (x, y, z) \stackrel{B}{\longmapsto} \frac{\langle(x, y, z),(2-1,1)\rangle}{\langle(2,-1,1),(2,-1,1)\rangle}(2,-1,1) \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \stackrel{B}{\longmapsto}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array} \quad \frac{2}{2}\right] \quad \text { so } B=\left[\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right] / 2} \\
& A=I-B=\left[\begin{array}{lll}
2 & & \\
& 2 & \\
& & 2
\end{array}\right]_{/ 2}-\left[\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right]_{/ 2}=\left[\begin{array}{ccc}
0 & -2 & -2 \\
1 & 3 & 1 \\
-1 & -1 & 1
\end{array}\right]{ }_{/ 2}
\end{aligned}
$$

check：

> in plane
> ゅゅ \downarrow

1 to plane for This inner product
[4] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
2 & -2 \\
-1 & 1
\end{array}\right] \\
\\
A^{n}=\frac{0^{n}}{3}\left[\begin{array}{c}
1 \\
1 \\
2
\end{array}\right]+\frac{3^{n}}{3}\left[\frac{2}{\square}\right]\left[\begin{array}{l}
-2 \\
\hline
\end{array}\right] \\
\lambda=0,3 \quad A^{n}=\frac{0^{n}}{3}\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]+\frac{3^{n}}{3}\left[\begin{array}{rr}
2 & -2 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & 1 \\
2 & 0
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
y=\frac{e^{-2 t}}{3}\left[\begin{array}{l}
1 \\
-1
\end{array}\right]+\frac{e^{t}}{3}\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
\lambda=-2,1 \quad e^{\text {At }}=\frac{e^{-2 t}}{3}\left[\begin{array}{rr}
2 & -1 \\
-2 & 1
\end{array}\right]+\frac{e^{t}}{3}\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right] \quad y=\frac{e^{-2 t}}{3}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+\frac{e^{t}}{3}\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{gathered}
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \lambda=0,2,3 \quad e^{\text {At }}=\frac{1}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -2 \\
0 & -1 & 2
\end{array}\right]+e^{2 t}\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{lll}
0 & 3 & 3 \\
0 & 2 & 2 \\
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

$$
e^{A t}=\frac{1}{4}\left[\begin{array}{ccc}
0 & 1 \\
0 & 2 \\
0 & -2 & 2
\end{array}\right]+\frac{e^{2 t}}{4}\left[\begin{array}{ccc}
4 & -1 & 1 \\
0 & 2,2 \\
0 & 2,2
\end{array}\right]+\frac{t e^{2 t}}{2}\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\lambda=0,2,2 \quad e^{A t}=\frac{1}{4}\left[\begin{array}{rrr}
0 & 1 & -1 \\
0 & 2 & -2 \\
0 & -2 & 2
\end{array}\right]+\frac{e^{2 t}}{4}\left[\begin{array}{rrr}
4 & -1 & 1 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right]+\frac{t e^{2 t}}{2}\left[\begin{array}{lll}
0 & 3 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

[8] Express the quadratic form

$$
3 x^{2}-2 x y+2 y^{2}-2 x z+2 z^{2}
$$

as a linear combination of squares of orthogonal linear forms.

$$
\begin{aligned}
& {\left[1 / 3(x+y+z)^{2}+1(y-z)^{2}+2 / 3(2 x-y-z)^{2}\right.} \\
\lambda=1,2,4 \quad A= & {\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\frac{2}{3}\left[\begin{array}{rrr}
4 & -2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right] } \\
& \frac{1}{3}(x+y+z)^{2}+(y-z)^{2}+\frac{2}{3}(2 x-y-z)^{2}
\end{aligned}
$$

