Final Exam

Linear Algebra, Dave Bayer, December 16, 2022
[1] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right] \mathrm{t}
$$

[2] Find the 3×3 matrix A that projects \mathbb{R}^{3} orthogonally onto the plane $x+y+2 z=0$.
[3] Find the 3×3 matrix A that projects \mathbb{R}^{3} orthogonally onto the plane $x+y+z=0$, with respect to the inner product

$$
<(a, b, c),(r, s, t)>=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{r} \\
\mathrm{~s} \\
\mathrm{t}
\end{array}\right]
$$

[4] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
2 & -2 \\
-1 & 1
\end{array}\right]
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
-1 & 1 \\
2 & 0
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

[8] Express the quadratic form

$$
3 x^{2}-2 x y+2 y^{2}-2 x z+2 z^{2}
$$

as a linear combination of squares of orthogonal linear forms.

