Exam 2, 8:40am
Linear Algebra, Dave Bayer, November 10, 2022

Name: \qquad Uni: \qquad

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] By least squares, find the equation of the form $y=a x+b$ that best fits the data

$$
\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]=\left[\begin{array}{rl}
-1 & 0 \\
0 & 0 \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

$$
\underbrace{\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]}_{\left[\begin{array}{lll}
6 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]}\left[\begin{array}{l}
a \\
b
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
-1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]}
$$

$$
y=7 / 10 x+2 / 5
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{ll}
6 & 2 \\
2 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
5 \\
3
\end{array}\right] } & =\left[\begin{array}{cc}
4 & -2 \\
-2 & 6
\end{array}\right] / 20\left[\begin{array}{l}
5 \\
3
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right] / 10\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{l}
7 \\
4
\end{array}\right] / 10
\end{aligned}
$$

*
[2] Find the determinant of the matrix

check another way:

[3] Find the inverse of the matrix

$$
\left.\begin{array}{c}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
0 & 2 & 5
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{ccc}
6 & -3 & 0 \\
-5 & 5 & -1 \\
2 & -2 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & \\
A^{-1} & \\
& 1 & \\
& & 1
\end{array}\right]} \\
\left.A^{-1}=\left[\begin{array}{ccc}
1 & 1 & 1
\end{array}\right] \begin{array}{llllll}
2 & 2 & 1 & 1 \\
2 & -3 & 5 & 1 & 1 & 2 \\
-5 & 5 & -1 \\
2 & -2 & 1
\end{array}\right] / 3 \\
1
\end{array}\right]
$$

[4] Find the 3×3 matrix A that projects R^{3} orthogonally onto the hyperplane $\underbrace{x+y+3 z=0}$, with respect to the usual inner product.

$$
\underbrace{\text { lane }}_{(1,1,3) \cdot(x, y, z)} x+y+3 z=0, \text { with res }
$$

$A+B=I, B$ projects onto normal vector $(1,1,3)$

$$
\begin{aligned}
& (x, y, z) \stackrel{B}{\longmapsto} \frac{(x, y, 2) \cdot(1,1,3)}{(1,1,3) \cdot(1,1,3)}(1,1,3) \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \stackrel{B}{\longmapsto}\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right] / / 11=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 3 \\
3 & 3 & 9
\end{array}\right] / 11} \\
& A=I-B=\left[\begin{array}{lll}
11 & & \\
& & \\
& & 11
\end{array}\right] / 11\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 3 \\
3 & 3 & 9
\end{array}\right] / 11=\left[\begin{array}{ccc}
10 & -1 & -3 \\
-1 & 10 & -3 \\
-3 & -3 & 2
\end{array}\right] / 11
\end{aligned}
$$

check:
［5］Find the 3×3 matrix A that projects R^{3} orthogonally onto the hyperplane $x+y+z=0$ ，with respect to the inner product

$$
<(a, b, c),(r, s, t)\rangle=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]
$$

$(1,1,1)$ is normal to $x+y+z=0$ using the usual dot product． It is nat harmal to the plane using this inner prodod． Well still use $A=I-B$ but we need to first find the normal．

$$
\begin{aligned}
& \langle(2,-1,1),(2,-1,1)\rangle=\left[\begin{array}{lll}
2-1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=2 \\
& (x, y, z) \stackrel{B}{\longmapsto} \frac{\langle(x, y, z),(2,-1,1)\rangle}{\langle(2,-1,1),(2,-1,1)\rangle}(2,-1,1) \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \stackrel{B}{\longmapsto}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { so } B=\left[\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right] / 2} \\
& A=I-B=\left[\begin{array}{lll}
2 & & \\
& 2 & \\
& & 2
\end{array}\right]_{/ 2}-\left[\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right]_{/ 2}=\left[\begin{array}{ccc}
0 & -2 & -2 \\
1 & 3 & 1 \\
-1 & -1 & 1
\end{array}\right]_{/ 2}
\end{aligned}
$$

check：

$$
\underbrace{\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]}_{\left(\begin{array}{ccc}
0 & -2 & -2 \\
1 & 3 & 1 \\
-1 & -1 & 1
\end{array}\right]_{2}}=\underset{\text { in plane }}{\left[\begin{array}{ccc}
0 & 2 & 2 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] / 2}=\underset{\text { in } 04}{\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]}
$$

in plane
四边的 L to plane for this inner product

