Exam 2, 10:10am
Linear Algebra, Dave Bayer, November 10, 2022

Name: \qquad Uni: \qquad

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] By least squares, find the equation of the form $y=a x+b$ that best fits the data

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]=\left[\begin{array}{rl}
-1 & 0 \\
0 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]} \\
& \underbrace{\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right]}_{A}\left[\begin{array}{l}
a \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& y=3 / 5 x+7 / 10 \quad\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{ll}
6 & 2 \\
2 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
5 \\
4
\end{array}\right]=\left[\begin{array}{l}
4-2 \\
-26
\end{array}\right] / 20^{2}\left[\begin{array}{l}
5 \\
4
\end{array}\right] \\
& x^{0} x^{1} \text { y } \int_{a x+b} \Delta \\
& =\left[\begin{array}{cc}
-1 & -1 \\
-1 & 3
\end{array}\right]_{10}\left[\begin{array}{l}
5 \\
4
\end{array}\right]=\left[\begin{array}{l}
6 \\
7
\end{array}\right]_{10} \\
& \left.\begin{array}{lll|l}
1 & -1 & 0 & 1 \\
1 & 0 & 1 & 7 \\
1 & 1 & 1 & 13 \\
1 & 2 & 2 & (9) \\
19
\end{array}\right)\left(\begin{array}{c}
1 \\
-3 \\
3 \\
-1
\end{array}\right)
\end{aligned}
$$

[2] Find the determinant of the matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
1 & 0 & 1 & 1 \\
5 & 5 & 5 & 5 \\
0 & 0 & 3 & 4
\end{array}\right]
$$

$\begin{aligned}\left|\begin{array}{llll}1 \\ 1 \\ 5 & 0 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 5 & 5 \\ 0 & 3 & 4\end{array}\right| & =-5\left|\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 3 & 4\end{array}\right|\end{aligned}=-5\left(\left.\begin{array}{lll}1 & 1 & 1 \\ 3 & 4\end{array}|-1| \begin{array}{ll}2 & 3 \\ 3 & 4\end{array} \right\rvert\,\right)=-5(1 \cdot 1-1(-1))$
check another way:

$$
\begin{aligned}
& 5\left|\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 3 & 1
\end{array}\right|=-5\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 3 & 1
\end{array}\right|=+5\left|\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right|=-10 \quad \square
\end{aligned}
$$

[3] Find the inverse of the matrix

$$
\left.\left.\begin{array}{c}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
0 & 3 & 4
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
0 & 3 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
0 & 3 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & -1 \\
-4 & 4 & 2 \\
3 & -3 & -1
\end{array}\right]=\left[\begin{array}{lll}
1 & \\
A & 1 & \\
& A^{-1} & 1
\end{array}\right]} \\
A^{-1} \\
\\
\\
1
\end{array}\right] \begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 \\
3 & 1 & 3 & 2 & 1 \\
1 & 4 & 3 & 1 \\
1 & 1 & 0 & 1 & 1 \\
2 & 1 & 3 & 2 & 1
\end{array}\right]
$$

[4] Find the 3×3 matrix A that projects R^{3} orthogonally onto the hyperplane $x+y+2 z=0$, with respect to the usual inner product.

$$
(1,1,2) \cdot(x, y, z)=0
$$

$A+B=I, B$ projects onto normal vector $(1,1,2)$

$$
\begin{aligned}
& (x, y, z) \stackrel{B}{\longmapsto} \frac{(x, y, 2) \cdot(1,1,2)}{(1,1,2) \cdot(1,1,2)}(1,1,2) \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \stackrel{B}{\longrightarrow}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right] / 6=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right] / 6} \\
& A=I-B=\left[\begin{array}{lll}
6 & & \\
& 6 & \\
& 6
\end{array}\right]-\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right] / 6=\left[\begin{array}{ccc}
5 & -1 & -2 \\
-1 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right] / 6
\end{aligned}
$$

check:

$$
\begin{aligned}
{\left[\begin{array}{rrr}
5 & -1 & -2 \\
-1 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right] / 6 }
\end{aligned}\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & -1 & 0 \\
2 & 0 & -1
\end{array}\right] ~=~ \underset{~ i n ~ p l a n e ~}{\left[\begin{array}{rrr}
0 & 6 & 12 \\
0 & -6 & 0 \\
0 & 0 & -6
\end{array}\right] / 6}=\underset{\text { ito plane }}{\left[\begin{array}{rrr}
0 & 1 & 2 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]}
$$

［5］Find the 3×3 matrix A that projects R^{3} orthogonally onto the hyperplane $x+y+z=0$ ，with respect to the inner product

$$
<(a, b, c),(r, s, t)\rangle=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]
$$

$(1,1,1)$ is normal to $x+y+z=0$ using the usual dot product． It is nat normal to the plane using this inner prodod． Well still use $A=I-B$ but we need to first find the normal．

$$
\begin{aligned}
& \langle(2,-1,2),(2,-1,2)\rangle=[2-12]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]=3 \\
& (x, y, z) \stackrel{B}{\longmapsto} \frac{\langle(x, y, z),(2,-1,2)\rangle}{\langle(2,-1,2),(2,-1,2)\rangle}(2,-1,2) \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \stackrel{B}{\longmapsto}\left[\begin{array}{l}
2 \\
-1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { so } B=\left[\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & -1 \\
2 & 2 & 2
\end{array}\right] / 3} \\
& A=I-B=\left[\begin{array}{lll}
3 & & \\
& 3 & \\
& & 3
\end{array}\right]_{/ 3}-\left[\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & -1 \\
2 & 2 & 2
\end{array}\right]_{/ 3}=\left[\begin{array}{ccc}
1 & -2 & -2 \\
1 & 4 & 1 \\
-2 & -2 & 1
\end{array}\right]_{/ 3}
\end{aligned}
$$

check：
in plane
ゅ边的 L to plane for this inner product

