Exam 2, 10:10am

Linear Algebra, Dave Bayer, November 10, 2022
[1] By least squares, find the equation of the form $y=a x+b$ that best fits the data

$$
\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]=\left[\begin{array}{rl}
-1 & 0 \\
0 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

[2] Find the determinant of the matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
1 & 0 & 1 & 1 \\
5 & 5 & 5 & 5 \\
0 & 0 & 3 & 4
\end{array}\right]
$$

[3] Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
0 & 3 & 4
\end{array}\right]
$$

[4] Find the 3×3 matrix A that projects R^{3} orthogonally onto the hyperplane $x+y+2 z=0$, with respect to the usual inner product.
[5] Find the 3×3 matrix A that projects R^{3} orthogonally onto the hyperplane $x+y+z=0$, with respect to the inner product

$$
<(a, b, c),(r, s, t)>=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]
$$

