Exam 1, 8:40am
Linear Algebra, Dave Bayer, October 4, 2022

Name: $\qquad$ Uni: $\qquad$

| $[1]$ | $[2]$ | $[3]$ | $[4]$ | $[5]$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] Solve the following system of equations.

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
2 & 2 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

2 independent conditions on 4 variables
$\Rightarrow$ solution is 2 -dimensional (a parametrized plane)

$$
\left.\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
2 & 2 & 1 & 2
\end{array}\right]\left(\left[\begin{array}{c}
2 \\
0 \\
-4 \\
0
\end{array}\right]+\stackrel{(c c}{1} \begin{array}{c}
1 \\
-1 \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
5 \\
t
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
-4 \\
0
\end{array}\right]+\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
5 \\
t
\end{array}\right]
$$

[2] Using matrix multiplication, count the number of paths of length six from $x$ to itself.

$$
\begin{aligned}
& C\left(\begin{array}{lll}
C & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
A
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2 \\
A^{2}
\end{array}\right]
\end{aligned}
$$

(4) (4) (2) from
$\left.\begin{array}{l|lll}\otimes(2) \\ \text { (2) } \\ \text { (2) }\end{array} \left\lvert\, \begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right.\right]$

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2 \\
A^{2}
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 3 \\
3 & 3 & 2 \\
3 & 2 & 3
\end{array}\right] \begin{gathered}
A^{3}
\end{gathered} \begin{gathered}
2 \text { patrons length } 3 \\
\otimes \text { to } \otimes
\end{gathered}
$$

22 patios

check:

we can unfold the graph, and count all paths by hand.
start with ane path of length zero "at" $\times$.
Each count is the sum of the counts coming in.

With more time, ane can understand this count better.
Call a path $\otimes$ to $\otimes$ "elementary" if it never visits $\otimes$ until it is done. Every path $\otimes$ to $\otimes$ can be factored into elementary paths.
There are two elementam paths of each length $2,3,4,5,6$ : Either go left, or go night.


We classify all paths of length 6 by Their elementary path pattern.
pattern: $222 \quad 24 \quad 42 \quad 33 \quad 6$
count: $\underbrace{2 \cdot 2 \cdot 2}_{8}+\underbrace{2 \cdot 2}_{4}+\underbrace{2 \cdot 2}_{4}+\underbrace{2 \cdot 2}_{4}+\underbrace{2}_{2}=22$
One can also figure this out using "generating fundrons" which is a topic studied in ombinatonis.
[3] Find all $2 \times 2$ matrices $A$ that satisfy the condition

$$
\begin{aligned}
& A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \\
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { awe conditions on four unknowns } \\
& \Rightarrow \text { 2-dimenssonal family of solutions } \\
& {\left[\begin{array}{ll}
a & b
\end{array}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=-1 \Rightarrow\left[\begin{array}{ll}
a & b
\end{array}\right]=[-10]+\left[\begin{array}{ll}
1 & -1
\end{array}\right] s\right.} \\
& {[c d][i]=1 \quad \Rightarrow\left[\begin{array}{cc}
{[ }
\end{array}\right]=[10]+[1-1] t} \\
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] s+\left[\begin{array}{cc}
0 & 0 \\
1-1
\end{array}\right] t
\end{aligned}
$$

check:

$$
\begin{aligned}
& \left(\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \mathrm{s}+\left[\begin{array}{cc}
0 & 0 \\
-1
\end{array}\right] t\right)\left[\begin{array}{l}
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 0 \\
10
\end{array}\right][i]+\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right][i] s+\left[\begin{array}{cc}
0 & 0 \\
-1
\end{array}\right][i] t \\
& =\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] s+\left[\begin{array}{l}
0 \\
0
\end{array}\right] t=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

This is a conceptual problem with easy arithmetic.
In linear algebra we aretranned to recognize a linear system of equations, even (especially) in disguised form.
This problem tests whether one has absorbed this world view, We then understand that the complete set af solutions is an affine space (point, line, plane...) whose dimension ans be found by counting on knows and independent conditions, and which can be written m the standard form "general = partiwlar + homogenesus".
Going four matrices that work is giving four pants on a plane, and reveals that one never saw this as a linear system of equations.
An answer $\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right]$ is absurd because the shapes doit match
[4] Find a system of equations having as solution set the following affine subspace of $\mathbb{R}^{4}$.

$$
\nabla\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

$V$ is a plane in $\mathbb{R}^{4} \Rightarrow$ need two independent conditions
(2)

$$
\left[\begin{array}{cccc}
1 & -1 & -1 & 0 \\
0 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

How do I quickly check your answer?

$$
\begin{array}{ll}
{\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
0 \\
0
\end{array}\right] ?} & {\left[\begin{array}{cccc}
1 & -1 & -1 & 0 \\
0 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { columns add to zero? }} \\
{\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] ?} & {\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { columns add to zero? }} \\
{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
-1
\end{array}\right] ?} & {\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 1 \\
\hline
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { columns add to hight hand side? }}
\end{array}
$$

* here, easier to check middle columns are the same.
[5] Find the intersection of the following two affine subspaces of $\mathbb{R}^{3}$.

$$
\left.\begin{array}{c}
\mathrm{V}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
-2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
a
\end{array}\right] \\
W \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+\left[\begin{array}{rr}
-2 & -5 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
b \\
c
\end{array}\right] .
$$

plug in parametrization for $V$ :

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
0 \\
-2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right][a]\right) } & =[6] \\
-6+6 a & =6 \Rightarrow a=2
\end{aligned}
$$

$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$ is point of intersection $\mathrm{V} \cap W$

Check: $\quad\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ -2\end{array}\right]+\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right][2]$

$$
\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+\left[\begin{array}{cc}
-2 & -5 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
$$

and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \neq\left[\begin{array}{rr}-2 & -5 \\ 1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}b \\ c\end{array}\right]$ for any $b, c$

