Exam 1, 10:10am
Linear Algebra, Dave Bayer, October 4, 2022

Name: \qquad Uni: \qquad

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] Solve the following system of equations.

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

2 independent conditions on 4 variables
\Rightarrow solution is 2 -dimensional (a parametrized plane)

$$
\left.\left[\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{array}\right]\left(\left[\begin{array}{c}
0 \\
0 \\
3 \\
-3
\end{array}\right]+\stackrel{(c c}{1} \begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-1 \\
-1
\end{array}\right]\left[\begin{array}{l}
5 \\
t
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
3 \\
-3
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 1 \\
-1 & -3
\end{array}\right]\left[\begin{array}{c}
5 \\
t
\end{array}\right]
$$

[2] Using matrix multiplication, count the number of paths of length nine from x to itself.

$$
\begin{aligned}
& \text { (4) } \\
& \left.\begin{array}{l|lll}
*(4) & \text { (2) from } \\
\text { (4) } & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
t_{0} & 0 & 1 & 1
\end{array}\right] \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
A
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
\left.\left.\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \begin{array}{c}
1 \text { pain length } 2 \\
\otimes \text { to } \otimes
\end{array}\right]
\end{array}\right.} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 1 & 3 \\
1 & 3 & 3
\end{array}\right] \begin{array}{c}
A^{2}
\end{array} \begin{array}{c}
0 \text { paths length } 3 \\
\otimes \text { to } \otimes
\end{array}} \\
& \left.\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 1 & 3 \\
1 & 3 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 1 & 3 \\
1 & 3 & 3
\end{array}\right]=\left[\begin{array}{l}
5 \\
A^{3}
\end{array}\right] \begin{array}{c}
A^{6}
\end{array}\right] \begin{array}{c}
\text { paths length } 6 \\
\otimes \text { to } \otimes
\end{array} \\
& \left.\begin{array}{c}
19 \text { paths } \\
\text { of length } 9
\end{array}\right]\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 1 & 3 \\
1 & 3 & 3
\end{array}\right]\left[\begin{array}{ll}
5 \\
5 \\
9
\end{array}\right]=\left[\begin{array}{ll}
A^{6}
\end{array}\right]=\left[\begin{array}{ll}
19 & \\
& A^{9}
\end{array}\right] \begin{array}{c}
\text { paths length } 9 \\
\otimes \text { to } \otimes
\end{array}
\end{aligned}
$$

check:

we can unfold the graph, and count all paths by hand.
start with one path of length zero "at" \times.
Each count is the sum of the counts coming in.

With more time, one can understand this count better.
Call a path \otimes to \otimes "elementary" if it never visits \otimes until it is done. Every path) \otimes to \otimes can be factored into elementary paths.
An elementary path steps to (4), then is a path (4) to (4) that doesit visit \otimes, then returns to \otimes.

So we need to count paths (4) to (4) for this subgraph: (4) (2)
There is one elementary path (4) to (4) of each length $2,3,4,5,6, \ldots$ To count all paths (4) to (4) we count all combinations of elementary paths.

We now know how many elementary paths There are \otimes to \otimes of each length 2,4,5,6,2,8,9: Subtract 2 and sse the above table. We count all paris by considering elementary paths:
Patterns for length 9: (need an odd length elementary path)

$003030300 \quad 233205 \quad 50 \quad 7$ look up (4) tr (4)
$\underbrace{1.1 .1} \underbrace{1.1 .1} \underbrace{1.1 .1} \underbrace{1.1}_{\text {1.1 }} \underbrace{1.3} \underbrace{3.1} \underbrace{8}$ take products

$$
+3+3+8=19 \not \subset
$$

One can also figure this out using "generating fundrons" which is a topic studied in ombinatoncs.
[3] Find all 2×2 matrices A that satisfy the condition

$$
\begin{gathered}
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \begin{array}{l}
\text { two conditions on four unknowns } \\
\Rightarrow 2 \text { 2-dimensinnal family of solutions }
\end{array} \\
{\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=-2 \Rightarrow\left[\begin{array}{ll}
a & b
\end{array}\right]=\left[\begin{array}{cc}
0 & -1
\end{array}\right]+\left[\begin{array}{ll}
2 & -1
\end{array}\right] s} \\
{\left[\begin{array}{ll}
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=1 \Rightarrow\left[\begin{array}{ll}
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
2 & -1
\end{array}\right] t} \\
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right] s+\left[\begin{array}{cc}
0 & 0 \\
2 & -1
\end{array}\right] t
\end{gathered}
$$

check:

$$
\begin{align*}
& \left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right] S+\left[\begin{array}{cc}
0 & 0 \\
2 & -1
\end{array}\right] t\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
= & {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] s+\left[\begin{array}{cc}
0 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] t } \\
= & {\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-2 \\
1
\end{array}\right] t }
\end{align*}
$$

This is a conceptual problem with easy arithmetic.
In linear algebra we are framed to recognize a linear system af equations, even (especially) in disguised form.
This problem tests whether one has absorbed this world view. We then understand that the complete set af solutions is an attire space (point, line, plane...) whose dimension can be found by counting un knowns and independent conditions, and which can be written in the standard form "general = particular t homogeneous".
Giving four matrices that work is giving four pants on a plane, and reveals that one never saw this as a linear system of equations. An answer $\left[\begin{array}{cc}-1 \\ 1 & 0\end{array}\right]+\left[\begin{array}{cc}2 & -1 \\ 2 & -1\end{array}\right]\left[\begin{array}{c}s \\ 2 \times 2 \\ 2 \times 2\end{array}\right] \begin{gathered}\text { is absurd because the shapes doit match } \\ \text { Always check matin shapes! }\end{gathered}$ $2 \times 2 \underbrace{2 \times 2}_{2 \times 1}$ 2*1 Always neck matrix shapes!
[4] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.

$$
\nabla\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

V is a plane in $\mathbb{R}^{4} \Rightarrow$ need two independent conditions

$$
\begin{align*}
& \text { (1) } \\
& \rightarrow 0 \\
& {\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & -1
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]} \tag{2}
\end{align*}
$$

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

How do I quickly check your answer?

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right] ? \quad\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \text { columns add to zero? }
$$

$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right] ? \quad\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & -1 & -1\end{array}\right]\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ columns add to zero?
$\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right] \rightarrow\left[\begin{array}{c}0 \\ -1\end{array}\right] ?$? $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1\end{array}-1\right]\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ columns add to night hand side?
[5] Find the intersection of the following two affine subspaces of \mathbb{R}^{3}.

$$
\begin{gathered}
\mathbb{V}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
a
\end{array}\right] \\
W\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ll}
2 & 1 \\
0 & 3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
b \\
c
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & -1 & 2
\end{array}\right]\left(\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ll}
2 & 1 \\
0 & 3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
b \\
c
\end{array}\right]\right)=\left[\begin{array}{l}
3
\end{array}\right]} \\
\Rightarrow \text { eqs for W is }\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3
\end{array}\right]
\end{gathered}
$$

plug in parametrization for V :

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & -1 & 2
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right][a]\right.} & =[3] \\
3+0 a & =3
\end{aligned}
$$

So a can be any value $\Rightarrow V$ is contained in W
check:

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{cc}
2 & 1 \\
0 & 3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
-5 \\
1
\end{array}\right] / 3} \\
& {\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
0 & 3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] / 3}
\end{aligned}
$$

