## Exam 1, 10:10am

Linear Algebra, Dave Bayer, October 4, 2022

Name: $\qquad$ Uni:

| $[1]$ | $[2]$ | $[3]$ | $[4]$ | $[5]$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] Solve the following system of equations.

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

[2] Using matrix multiplication, count the number of paths of length nine from $x$ to itself.

[3] Find all $2 \times 2$ matrices $A$ that satisfy the condition

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

[4] Find a system of equations having as solution set the following affine subspace of $\mathbb{R}^{4}$.

$$
\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

[5] Find the intersection of the following two affine subspaces of $\mathbb{R}^{3}$.

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right][\mathrm{a}]} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{rr}
2 & 1 \\
0 & 3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{b} \\
\mathrm{c}
\end{array}\right]}
\end{gathered}
$$

