2×2 Exercise Set A (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right] \\
\lambda=-2,0 \quad A^{n}=\frac{(-2)^{n}}{2}\left[\begin{array}{ll}
-1 & 1 \\
-3 & 3
\end{array}\right]+\frac{0^{n}}{2}\left[\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right]
\end{gathered}
$$

[2] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & -1 \\
-3 & -1
\end{array}\right] \\
\lambda=-2,2 \quad A^{n}=\frac{(-2)^{n}}{4}\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]+\frac{2^{n}}{4}\left[\begin{array}{rr}
3 & -1 \\
-3 & 1
\end{array}\right]
\end{gathered}
$$

[3] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right] \\
\lambda=-1,2 \quad A^{n}=\frac{(-1)^{n}}{3}\left[\begin{array}{rr}
2 & -1 \\
-2 & 1
\end{array}\right]+\frac{2^{n}}{3}\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]
\end{gathered}
$$

[4] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right] \\
\lambda=-2,3 \quad A^{n}=\frac{(-2)^{n}}{5}\left[\begin{array}{rr}
2 & -2 \\
-3 & 3
\end{array}\right]+\frac{3^{n}}{5}\left[\begin{array}{ll}
3 & 2 \\
3 & 2
\end{array}\right]
\end{gathered}
$$

[5] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
2 & 2 \\
-2 & -3
\end{array}\right] \\
\lambda=-2,1 \quad A^{n}=\frac{(-2)^{n}}{3}\left[\begin{array}{rr}
-1 & -2 \\
2 & 4
\end{array}\right]+\frac{1}{3}\left[\begin{array}{rr}
4 & 2 \\
-2 & -1
\end{array}\right]
\end{gathered}
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
-3 & 1 \\
-2 & 0
\end{array}\right]
$$

$$
\lambda=-2,-1 \quad A^{n}=(-2)^{n}\left[\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right]+(-1)^{n}\left[\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right] \\
\lambda=-1,2 \quad A^{n}=\frac{(-1)^{n}}{3}\left[\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right]+\frac{2^{n}}{3}\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]
\end{gathered}
$$

[8] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right] \\
\lambda=-2,-1 \quad A^{n}=(-2)^{n}\left[\begin{array}{rr}
-1 & -1 \\
2 & 2
\end{array}\right]+(-1)^{n}\left[\begin{array}{rr}
2 & 1 \\
-2 & -1
\end{array}\right]
\end{gathered}
$$

2×2 Exercise Set B (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
3 & 1 \\
-3 & -1
\end{array}\right] \\
\lambda=0,2 \quad e^{\text {At }}=\frac{1}{2}\left[\begin{array}{rr}
-1 & -1 \\
3 & 3
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{rr}
3 & 1 \\
-3 & -1
\end{array}\right]
\end{gathered}
$$

[2] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 2
\end{array}\right] \\
\lambda=-1,0 \quad e^{\text {At }}=e^{-t}\left[\begin{array}{ll}
3 & -2 \\
3 & -2
\end{array}\right]+\left[\begin{array}{ll}
-2 & 2 \\
-3 & 3
\end{array}\right]
\end{gathered}
$$

[3] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & -3 \\
-2 & 0
\end{array}\right] \\
\lambda=-3,2 \quad e^{A t}=\frac{e^{-3 t}}{5}\left[\begin{array}{ll}
3 & 3 \\
2 & 2
\end{array}\right]+\frac{e^{2 t}}{5}\left[\begin{array}{rr}
2 & -3 \\
-2 & 3
\end{array}\right]
\end{gathered}
$$

[4] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
3 & 3 \\
-1 & -1
\end{array}\right] \\
\lambda=0,2 \quad e^{\text {At }}=\frac{1}{2}\left[\begin{array}{rr}
-1 & -3 \\
1 & 3
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{rr}
3 & 3 \\
-1 & -1
\end{array}\right]
\end{gathered}
$$

[5] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & -1 \\
-3 & -1
\end{array}\right] \\
\lambda=-2,2 \quad e^{A t}=\frac{e^{-2 t}}{4}\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]+\frac{e^{2 t}}{4}\left[\begin{array}{rr}
3 & -1 \\
-3 & 1
\end{array}\right]
\end{gathered}
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
-2 & 2 \\
-3 & 3
\end{array}\right]
$$

$$
\lambda=0,1 \quad e^{\lambda t}=\left[\begin{array}{ll}
3 & -2 \\
3 & -2
\end{array}\right]+e^{t}\left[\begin{array}{ll}
-2 & 2 \\
-3 & 3
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & -2 \\
3 & -3
\end{array}\right] \\
\lambda=-1,0 \quad e^{A t}=e^{-t}\left[\begin{array}{ll}
-2 & 2 \\
-3 & 3
\end{array}\right]+\left[\begin{array}{ll}
3 & -2 \\
3 & -2
\end{array}\right]
\end{gathered}
$$

[8] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right] \\
\lambda=-1,3 \quad e^{\text {At }}=\frac{e^{-t}}{4}\left[\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right]+\frac{e^{3 t}}{4}\left[\begin{array}{rr}
1 & -1 \\
-3 & 3
\end{array}\right]
\end{gathered}
$$

2×2 Exercise Set C (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013

[1] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\lambda=0,3 \quad e^{\text {At }}=\frac{1}{3}\left[\begin{array}{rr}
2 & -1 \\
-2 & 1
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right] \quad y=\frac{1}{3}\left[\begin{array}{r}
2 \\
-2
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{gathered}
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0 & -1 \\
2 & -3
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\lambda=-2,-1 \quad e^{A t}=e^{-2 t}\left[\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right]+e^{-t}\left[\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right] \quad y=e^{-2 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+e^{-t}\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & -1 \\
-3 & -1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\lambda=-2,2 \quad e^{A t}=\frac{e^{-2 t}}{4}\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]+\frac{e^{2 t}}{4}\left[\begin{array}{rr}
3 & -1 \\
-3 & 1
\end{array}\right] \quad y=\frac{e^{-2 t}}{4}\left[\begin{array}{l}
2 \\
6
\end{array}\right]+\frac{e^{2 t}}{4}\left[\begin{array}{r}
2 \\
-2
\end{array}\right]
\end{gathered}
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & 1 \\
2 & -2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\lambda=-3,0 \quad e^{\text {At }}=\frac{e^{-3 t}}{3}\left[\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right]+\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] \quad y=\frac{e^{-3 t}}{3}\left[\begin{array}{r}
1 \\
-2
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
2 \\
2
\end{array}\right]
\end{gathered}
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\lambda=-1,2 \quad e^{A t}=\frac{e^{-t}}{3}\left[\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right]+\frac{e^{2 t}}{3}\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] \quad y=\frac{e^{-t}}{3}\left[\begin{array}{r}
-1 \\
2
\end{array}\right]+\frac{e^{2 t}}{3}\left[\begin{array}{l}
4 \\
4
\end{array}\right]
\end{gathered}
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\lambda=-1,0 \quad e^{\mathcal{A t}}=e^{-t}\left[\begin{array}{ll}
3 & -2 \\
3 & -2
\end{array}\right]+\left[\begin{array}{ll}
-2 & 2 \\
-3 & 3
\end{array}\right] \quad y=e^{-t}\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{gathered}
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-2 & -1 \\
-2 & -1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\lambda=-3,0 \quad e^{\text {At }}=\frac{e^{-3 t}}{3}\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right] \quad y=\frac{e^{-3 t}}{3}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\frac{1}{3}\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
\end{gathered}
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & -2 \\
1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\lambda=0,1 \quad e^{\text {At }}=\left[\begin{array}{rr}
2 & 2 \\
-1 & -1
\end{array}\right]+e^{t}\left[\begin{array}{rr}
-1 & -2 \\
1 & 2
\end{array}\right] \quad y=\left[\begin{array}{r}
2 \\
-1
\end{array}\right]+e^{t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{gathered}
$$

2×2 Exercise Set D (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & 3 \\
-3 & -5
\end{array}\right] \\
\lambda=-2,-2 \quad A^{n}=(-2)^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+n(-2)^{n-1}\left[\begin{array}{rr}
3 & 3 \\
-3 & -3
\end{array}\right]
\end{gathered}
$$

[2] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right] \\
\lambda=0,0 \quad A^{n}=0^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+n 0^{n-1}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]
\end{gathered}
$$

[3] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
0 & -1 \\
1 & 2
\end{array}\right] \\
\lambda=1,1 \quad A^{n}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\mathfrak{n}\left[\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

[4] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
2 & -1 \\
4 & 6
\end{array}\right] \\
\lambda=4,4 \quad A^{n}=4^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+n 4^{n-1}\left[\begin{array}{rr}
-2 & -1 \\
4 & 2
\end{array}\right]
\end{gathered}
$$

[5] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
6 & 5 \\
-5 & -4
\end{array}\right] \\
\lambda=1,1 \quad A^{n}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\mathfrak{n}\left[\begin{array}{rr}
5 & 5 \\
-5 & -5
\end{array}\right]
\end{gathered}
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
6 & 1 \\
-1 & 4
\end{array}\right]
$$

$$
\lambda=5,5 \quad A^{n}=5^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+n 5^{n-1}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
4 & -5 \\
5 & -6
\end{array}\right] \\
\lambda=-1,-1 \quad A^{n}=(-1)^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+n(-1)^{n-1}\left[\begin{array}{cc}
5 & -5 \\
5 & -5
\end{array}\right]
\end{gathered}
$$

[8] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-5 & -4 \\
1 & -1
\end{array}\right] \\
\lambda=-3,-3 \quad A^{n}=(-3)^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+n(-3)^{n-1}\left[\begin{array}{rr}
-2 & -4 \\
1 & 2
\end{array}\right]
\end{gathered}
$$

2×2 Exercise Set E (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013

[1] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
5 & -4 \\
4 & -3
\end{array}\right] \\
\lambda=1,1 \quad e^{A t}=e^{\mathrm{t}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\operatorname{te} e^{\mathrm{t}}\left[\begin{array}{ll}
4 & -4 \\
4 & -4
\end{array}\right]
\end{gathered}
$$

[2] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-5 & -4 \\
4 & 3
\end{array}\right] \\
\lambda=-1,-1 \quad e^{\text {At }}=e^{-t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{-t}\left[\begin{array}{rr}
-4 & -4 \\
4 & 4
\end{array}\right]
\end{gathered}
$$

[3] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-3 & -1 \\
1 & -1
\end{array}\right] \\
\lambda=-2,-2 \quad e^{A t}=e^{-2 t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{-2 t}\left[\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

[4] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
5 & 1 \\
-1 & 3
\end{array}\right] \\
\lambda=4,4 \quad e^{\text {At }}=e^{4 \mathrm{t}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\mathrm{t} e^{4 \mathrm{t}}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]
\end{gathered}
$$

[5] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right] \\
\lambda=0,0 \quad e^{\text {At }}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\mathrm{t}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]
\end{gathered}
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
-4 & 3 \\
-3 & 2
\end{array}\right]
$$

$$
\lambda=-1,-1 \quad e^{A t}=e^{-t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{-t}\left[\begin{array}{ll}
-3 & 3 \\
-3 & 3
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right] \\
\lambda=1,1 \quad e^{\text {At }}=e^{t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\operatorname{te} e^{t}\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right]
\end{gathered}
$$

[8] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & 2 \\
-2 & -5
\end{array}\right] \\
\lambda=-3,-3 \quad e^{A t}=e^{-3 t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{-3 t}\left[\begin{array}{rr}
2 & 2 \\
-2 & -2
\end{array}\right]
\end{gathered}
$$

2×2 Exercise Set F (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013

[1] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
5 & 4 \\
-4 & -3
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\lambda=1,1 \quad e^{\text {At }}=e^{t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{t}\left[\begin{array}{rr}
4 & 4 \\
-4 & -4
\end{array}\right] \quad y=e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t e^{t}\left[\begin{array}{r}
8 \\
-8
\end{array}\right]
\end{gathered}
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
2 & -4 \\
1 & 6
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
\lambda=4,4 \quad e^{\mathcal{A t}}=e^{4 \mathrm{t}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\mathrm{t} e^{4 \mathrm{t}}\left[\begin{array}{rr}
-2 & -4 \\
1 & 2
\end{array}\right] \quad y=e^{4 \mathrm{t}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\mathrm{t} e^{4 \mathrm{t}}\left[\begin{array}{r}
-8 \\
4
\end{array}\right]
\end{gathered}
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & 4 \\
-1 & -5
\end{array}\right], \quad y(0)=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
\lambda=-3,-3 \quad e^{A t}=e^{-3 t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{-3 t}\left[\begin{array}{rr}
2 & 4 \\
-1 & -2
\end{array}\right] \quad y=e^{-3 t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+t e^{-3 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\lambda=0,0 \quad e^{\text {At }}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\mathrm{t}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right] \quad y=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\mathrm{t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-2 & -1 \\
4 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
\lambda=0,0 \quad e^{\text {At }}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\mathrm{t}\left[\begin{array}{rr}
-2 & -1 \\
4 & 2
\end{array}\right] \quad y=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+\mathrm{t}\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
\end{gathered}
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right], \quad y(0)=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
\lambda=0,0 \quad e^{A t}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right] \quad y=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
6 \\
3
\end{array}\right]
\end{gathered}
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-5 & -4 \\
4 & 3
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\lambda=-1,-1 \quad e^{A t}=e^{-t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{-t}\left[\begin{array}{rr}
-4 & -4 \\
4 & 4
\end{array}\right] \quad y=e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+t e^{-t}\left[\begin{array}{r}
-12 \\
12
\end{array}\right]
\end{gathered}
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-4 & -3 \\
3 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\lambda=-1,-1 \quad e^{A t}=e^{-t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{-t}\left[\begin{array}{rr}
-3 & -3 \\
3 & 3
\end{array}\right] \quad y=e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+t e^{-t}\left[\begin{array}{r}
-9 \\
9
\end{array}\right]
\end{gathered}
$$

2×2 Exercise Set G (symmetric matrices)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-3 & -2 \\
-2 & -3
\end{array}\right] \\
\lambda=-5,-1 \quad A^{n}=\frac{(-5)^{n}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\frac{(-1)^{n}}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

[2] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & 2 \\
2 & 2
\end{array}\right] \\
\lambda=-2,3 \quad A^{n}=\frac{(-2)^{n}}{5}\left[\begin{array}{rr}
4 & -2 \\
-2 & 1
\end{array}\right]+\frac{3^{n}}{5}\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
\end{gathered}
$$

[3] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right] \\
\lambda=0,5 \quad A^{n}=\frac{0^{n}}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]+\frac{5^{n}}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]
\end{gathered}
$$

[4] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-4 & -2 \\
-2 & -1
\end{array}\right] \\
\lambda=-5,0 \quad A^{n}=\frac{(-5)^{n}}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]+\frac{0^{n}}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]
\end{gathered}
$$

[5] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-3 & 1 \\
1 & -3
\end{array}\right] \\
\lambda=-4,-2 \quad A^{n}=\frac{(-4)^{n}}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]+\frac{(-2)^{n}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
-2 & -1 \\
-1 & -2
\end{array}\right]
$$

$$
\lambda=-3,-1 \quad A^{n}=\frac{(-3)^{n}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\frac{(-1)^{n}}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-4 & 1 \\
1 & -4
\end{array}\right] \\
\lambda=-5,-3 \quad A^{n}=\frac{(-5)^{n}}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]+\frac{(-3)^{n}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

[8] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right] \\
\lambda=-1,4 \quad A^{n}=\frac{(-1)^{n}}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]+\frac{4^{n}}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]
\end{gathered}
$$

2×2 Exercise Set H (symmetric matrices)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-3 & -2 \\
-2 & 0
\end{array}\right] \\
\lambda=-4,1 \quad e^{\text {At }}=\frac{e^{-4 t}}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]+\frac{e^{t}}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]
\end{gathered}
$$

[2] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right] \\
\lambda=-1,4 \quad e^{\text {At }}=\frac{e^{-t}}{5}\left[\begin{array}{rr}
4 & -2 \\
-2 & 1
\end{array}\right]+\frac{e^{4 t}}{5}\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
\end{gathered}
$$

[3] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & 2 \\
2 & -1
\end{array}\right] \\
\lambda=-3,1 \quad e^{A t}=\frac{e^{-3 t}}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

[4] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-1 & 2 \\
2 & -4
\end{array}\right] \\
\lambda=-5,0 \quad e^{A t}=\frac{e^{-5 t}}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]+\frac{1}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]
\end{gathered}
$$

[5] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] \\
\lambda=2,4 \quad e^{\lambda t}=\frac{e^{2 t}}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]+\frac{e^{4 t}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-1 & -2 \\
-2 & 2
\end{array}\right]
$$

$$
\lambda=-2,3 \quad e^{A t}=\frac{e^{-2 t}}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]+\frac{e^{3 t}}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-5 & -2 \\
-2 & -2
\end{array}\right] \\
\lambda=-6,-1 \quad e^{A t}=\frac{e^{-6 t}}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]+\frac{e^{-t}}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]
\end{gathered}
$$

[8] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -5
\end{array}\right] \\
\lambda=-6,-1 \quad e^{A t}=\frac{e^{-6 t}}{5}\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]+\frac{e^{-t}}{5}\left[\begin{array}{rr}
4 & -2 \\
-2 & 1
\end{array}\right]
\end{gathered}
$$

2×2 Exercise Set I (quadratic forms)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Express the quadratic form

$$
3 x^{2}-2 x y+3 y^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=2,4 \quad A=\left[\begin{array}{rr}
3 & -1 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+2\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \\
3 x^{2}-2 x y+3 y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{rr}
3 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=(x+y)^{2}+2(x-y)^{2}
\end{gathered}
$$

[2] Express the quadratic form

$$
-3 x^{2}+2 x y-3 y^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=-4,-2 \quad A=\left[\begin{array}{rr}
-3 & 1 \\
1 & -3
\end{array}\right]=-2\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
-3 x^{2}+2 x y-3 y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{rr}
-3 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-2(x-y)^{2}-(x+y)^{2}
\end{gathered}
$$

[3] Express the quadratic form

$$
-x^{2}-4 x y-y^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=-3,1 \quad A=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -1
\end{array}\right]=-\frac{3}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \\
-x^{2}-4 x y-y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
-1 & -2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\frac{3}{2}(x+y)^{2}+\frac{1}{2}(x-y)^{2}
\end{gathered}
$$

[4] Express the quadratic form

$$
2 x^{2}-4 x y+5 y^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=1,6 \quad A=\left[\begin{array}{rr}
2 & -2 \\
-2 & 5
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]+\frac{6}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right] \\
2 x^{2}-4 x y+5 y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{rr}
2 & -2 \\
-2 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{5}(2 x+y)^{2}+\frac{6}{5}(x-2 y)^{2}
\end{gathered}
$$

[5] Express the quadratic form

$$
2 x^{2}+4 x y-y^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=-2,3 \quad A=\left[\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right]=-\frac{2}{5}\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]+\frac{3}{5}\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right] \\
2 x^{2}+4 x y-y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\frac{2}{5}(x-2 y)^{2}+\frac{3}{5}(2 x+y)^{2}
\end{gathered}
$$

[6] Express the quadratic form

$$
3 x^{2}+2 x y+3 y^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=2,4 \quad A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]+2\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
3 x^{2}+2 x y+3 y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=(x-y)^{2}+2(x+y)^{2}
\end{gathered}
$$

[7] Express the quadratic form

$$
-2 x^{2}+4 x y+y^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=-3,2 \quad A=\left[\begin{array}{rr}
-2 & 2 \\
2 & 1
\end{array}\right]=-\frac{3}{5}\left[\begin{array}{rr}
4 & -2 \\
-2 & 1
\end{array}\right]+\frac{2}{5}\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \\
-2 x^{2}+4 x y+y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{rr}
-2 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\frac{3}{5}(2 x-y)^{2}+\frac{2}{5}(x+2 y)^{2}
\end{gathered}
$$

[8] Express the quadratic form

$$
-x^{2}-8 x y-y^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=-5,3 \quad A=\left[\begin{array}{ll}
-1 & -4 \\
-4 & -1
\end{array}\right]=-\frac{5}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\frac{3}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \\
-x^{2}-8 x y-y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
-1 & -4 \\
-4 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\frac{5}{2}(x+y)^{2}+\frac{3}{2}(x-y)^{2}
\end{gathered}
$$

2×2 Exercise Set J (recurrence relations)

Linear Algebra, Dave Bayer, November 24, 2013

[1] Solve the recurrence relation

$$
\begin{gathered}
f(0)=a, \quad f(1)=b, \quad f(n)=-5 f(n-1)-4 f(n-2) \\
{\left[\begin{array}{c}
f(n+1) \\
f(n)
\end{array}\right]=\left[\begin{array}{rr}
-5 & -4 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
b \\
a
\end{array}\right]=\frac{(-4)^{n}}{3}\left[\begin{array}{rr}
4 & 4 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]+\frac{(-1)^{n}}{3}\left[\begin{array}{rr}
-1 & -4 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]} \\
f(n)=\frac{(-4)^{n}}{3}(-b-a)+\frac{(-1)^{n}}{3}(b+4 a)
\end{gathered}
$$

[2] Solve the recurrence relation

$$
\begin{gathered}
f(0)=a, \quad f(1)=b, \quad f(n)=6 f(n-1)-5 f(n-2) \\
{\left[\begin{array}{c}
f(n+1) \\
f(n)
\end{array}\right]=\left[\begin{array}{rr}
6 & -5 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
b \\
a
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
-1 & 5 \\
-1 & 5
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]+\frac{5^{n}}{4}\left[\begin{array}{cc}
5 & -5 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]} \\
f(n)=\frac{1}{4}(-b+5 a)+\frac{5^{n}}{4}(b-a)
\end{gathered}
$$

[3] Solve the recurrence relation

$$
\begin{gathered}
f(0)=a, \quad f(1)=b, \quad f(n)=-6 f(n-1)-8 f(n-2) \\
{\left[\begin{array}{c}
f(n+1) \\
f(n)
\end{array}\right]=\left[\begin{array}{rr}
-6 & -8 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
b \\
a
\end{array}\right]=\frac{(-4)^{n}}{2}\left[\begin{array}{rr}
4 & 8 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]+\frac{(-2)^{n}}{2}\left[\begin{array}{rr}
-2 & -8 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]} \\
f(n)=\frac{(-4)^{n}}{2}(-b-2 a)+\frac{(-2)^{n}}{2}(b+4 a)
\end{gathered}
$$

[4] Solve the recurrence relation

$$
\begin{gathered}
f(0)=a, \quad f(1)=b, \quad f(n)=-4 f(n-1)+5 f(n-2) \\
{\left[\begin{array}{c}
f(n+1) \\
f(n)
\end{array}\right]=\left[\begin{array}{rr}
-4 & 5 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
b \\
a
\end{array}\right]=\frac{(-5)^{n}}{6}\left[\begin{array}{rr}
5 & -5 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]+\frac{1}{6}\left[\begin{array}{ll}
1 & 5 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]} \\
f(n)=\frac{(-5)^{n}}{6}(-b+a)+\frac{1}{6}(b+5 a)
\end{gathered}
$$

[5] Solve the recurrence relation

$$
\begin{gathered}
f(0)=a, \quad f(1)=b, \quad f(n)=-f(n-1)+6 f(n-2) \\
{\left[\begin{array}{c}
f(n+1) \\
f(n)
\end{array}\right]=\left[\begin{array}{rr}
-1 & 6 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
b \\
a
\end{array}\right]=\frac{(-3)^{n}}{5}\left[\begin{array}{rr}
3 & -6 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]+\frac{2^{n}}{5}\left[\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]} \\
f(n)=\frac{(-3)^{n}}{5}(-b+2 a)+\frac{2^{n}}{5}(b+3 a)
\end{gathered}
$$

[6] Solve the recurrence relation

$$
\begin{gathered}
f(0)=a, \quad f(1)=b, \quad f(n)=-6 f(n-1)+7 f(n-2) \\
{\left[\begin{array}{c}
f(n+1) \\
f(n)
\end{array}\right]=\left[\begin{array}{rr}
-6 & 7 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
b \\
a
\end{array}\right]=\frac{(-7)^{n}}{8}\left[\begin{array}{rr}
7 & -7 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]+\frac{1}{8}\left[\begin{array}{ll}
1 & 7 \\
1 & 7
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]} \\
f(n)=\frac{(-7)^{n}}{8}(-b+a)+\frac{1}{8}(b+7 a)
\end{gathered}
$$

[7] Solve the recurrence relation

$$
\begin{gathered}
f(0)=a, \quad f(1)=b, \quad f(n)=-6 f(n-1)-5 f(n-2) \\
{\left[\begin{array}{c}
f(n+1) \\
f(n)
\end{array}\right]=\left[\begin{array}{rr}
-6 & -5 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
b \\
a
\end{array}\right]=\frac{(-5)^{n}}{4}\left[\begin{array}{rr}
5 & 5 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]+\frac{(-1)^{n}}{4}\left[\begin{array}{rr}
-1 & -5 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]} \\
f(n)=\frac{(-5)^{n}}{4}(-b-a)+\frac{(-1)^{n}}{4}(b+5 a)
\end{gathered}
$$

[8] Solve the recurrence relation

$$
\begin{gathered}
f(0)=a, \quad f(1)=b, \quad f(n)=f(n-1)+6 f(n-2) \\
{\left[\begin{array}{c}
f(n+1) \\
f(n)
\end{array}\right]=\left[\begin{array}{ll}
1 & 6 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
b \\
a
\end{array}\right]=\frac{(-2)^{n}}{5}\left[\begin{array}{rr}
2 & -6 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]+\frac{3^{n}}{5}\left[\begin{array}{ll}
3 & 6 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]} \\
f(n)=\frac{(-2)^{n}}{5}(-b+3 a)+\frac{3^{n}}{5}(b+2 a)
\end{gathered}
$$

3×3 Exercise Set A (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 1 \\
1 & 2 & 2
\end{array}\right] \\
\lambda=0,2,3 \quad A^{n}=\frac{0^{n}}{6}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-3 & 4 & -2 \\
3 & -4 & 2
\end{array}\right]+\frac{2^{n}}{2}\left[\begin{array}{rrr}
2 & 0 & 0 \\
-1 & 0 & 0 \\
-5 & 0 & 0
\end{array}\right]+\frac{3^{n}}{3}\left[\begin{array}{lll}
0 & 0 & 0 \\
3 & 1 & 1 \\
6 & 2 & 2
\end{array}\right]
\end{gathered}
$$

[2] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 0 \\
2 & 2 & 1
\end{array}\right] \\
\lambda=-1,1,3 \quad A^{n}=\frac{(-1)^{n}}{2}\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right]+\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & -1 & 0
\end{array}\right]+\frac{3^{n}}{2}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]
\end{gathered}
$$

[3] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right] \\
\lambda=0,2,3 \quad A^{n}=\frac{0^{n}}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 2 & -2 \\
0 & -1 & 1
\end{array}\right]+2^{n}\left[\begin{array}{rrr}
1 & -1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{3^{n}}{3}\left[\begin{array}{lll}
0 & 3 & 6 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]
\end{gathered}
$$

[4] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right] \\
\lambda=-1,1,3 \quad A^{n}=\frac{(-1)^{n}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{3^{n}}{2}\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
2 & 1 & 1 \\
2 & 0 & 1
\end{array}\right]
$$

$$
\lambda=0,1,3 \quad A^{n}=\frac{0^{n}}{3}\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 0 & 0 \\
-2 & 0 & 2
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-2 & 2 & -1 \\
0 & 0 & 0
\end{array}\right]+\frac{3^{n}}{6}\left[\begin{array}{lll}
4 & 0 & 2 \\
6 & 0 & 3 \\
4 & 0 & 2
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 2 \\
0 & 0 & 2
\end{array}\right] \\
\lambda=0,2,3 \quad A^{n}=\frac{0^{n}}{6}\left[\begin{array}{rrr}
4 & -4 & 2 \\
-2 & 2 & -1 \\
0 & 0 & 0
\end{array}\right]+\frac{2^{n}}{2}\left[\begin{array}{rrr}
0 & 0 & -4 \\
0 & 0 & -3 \\
0 & 0 & 2
\end{array}\right]+\frac{3^{n}}{3}\left[\begin{array}{lll}
1 & 2 & 5 \\
1 & 2 & 5 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[7] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
2 & 2 & 2
\end{array}\right] \\
\lambda=0,1,3 \quad A^{n}=\frac{0^{n}}{3}\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 0 & 0 \\
-2 & 0 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 2 & 0 \\
0 & -2 & 0
\end{array}\right]+\frac{3^{n}}{6}\left[\begin{array}{lll}
2 & 3 & 2 \\
0 & 0 & 0 \\
4 & 6 & 4
\end{array}\right]
\end{gathered}
$$

[8] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 2 & 2 \\
2 & 1 & 1
\end{array}\right] \\
\lambda=0,2,3 \quad A^{n}=\frac{0^{n}}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
1 & 1 & -2 \\
-1 & -1 & 2
\end{array}\right]+2^{n}\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]+\frac{3^{n}}{3}\left[\begin{array}{lll}
0 & 0 & 0 \\
8 & 2 & 2 \\
4 & 1 & 1
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set B (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 1 & 2 \\
0 & 0 & 2
\end{array}\right] \\
\lambda=0,2,3 \quad e^{\text {At }}=\frac{1}{6}\left[\begin{array}{rrr}
2 & -2 & 1 \\
-4 & 4 & -2 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{rrr}
0 & 0 & -3 \\
0 & 0 & -2 \\
0 & 0 & 2
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{lll}
2 & 1 & 4 \\
2 & 1 & 4 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[2] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \\
\lambda=-1,1,3 \quad e^{\text {At }}=\frac{e^{-t}}{8}\left[\begin{array}{rrr}
1 & 1 & -3 \\
1 & 1 & -3 \\
-2 & -2 & 6
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{rrr}
1 & -3 & -1 \\
-1 & 3 & 1 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{3 t}}{8}\left[\begin{array}{lll}
5 & 5 & 5 \\
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]
\end{gathered}
$$

[3] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 0 & 0
\end{array}\right] \\
\lambda=-1,1,3 \quad e^{A t}=\frac{e^{-t}}{8}\left[\begin{array}{rrr}
3 & -1 & -5 \\
0 & 0 & 0 \\
-3 & 1 & 5
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{rrr}
1 & -1 & 1 \\
-2 & 2 & -2 \\
1 & -1 & 1
\end{array}\right]+\frac{e^{3 t}}{8}\left[\begin{array}{lll}
3 & 3 & 3 \\
4 & 4 & 4 \\
1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[4] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1 \\
1 & 0 & 2
\end{array}\right] \\
\lambda=-1,1,3 \quad e^{A t}=\frac{e^{-t}}{8}\left[\begin{array}{rrr}
6 & -3 & -3 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{rrr}
0 & 1 & -1 \\
0 & 3 & -3 \\
0 & -1 & 1
\end{array}\right]+\frac{e^{3 t}}{8}\left[\begin{array}{lll}
2 & 1 & 5 \\
2 & 1 & 5 \\
2 & 1 & 5
\end{array}\right]
\end{gathered}
$$

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 2 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

$$
\lambda=0,1,3 \quad e^{\text {At }}=\frac{1}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-1 & 1 & -1 \\
2 & -2 & 2
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{rrr}
2 & 0 & 0 \\
-1 & 0 & 0 \\
-3 & 0 & 0
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{lll}
0 & 0 & 0 \\
5 & 4 & 2 \\
5 & 4 & 2
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 2 & 1 \\
0 & 1 & 0 \\
2 & 2 & 1
\end{array}\right] \\
\lambda=0,1,3 \quad e^{\text {At }}=\frac{1}{3}\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 0 & 0 \\
-2 & 0 & 2
\end{array}\right]+e^{t}\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & -1 & 0
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{lll}
2 & 3 & 1 \\
0 & 0 & 0 \\
2 & 3 & 1
\end{array}\right]
\end{gathered}
$$

[7] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 2 & 1 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \\
\lambda=1,2,3 \quad e^{A t}=\frac{e^{t}}{2}\left[\begin{array}{rrr}
0 & -1 & 1 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+e^{2 t}\left[\begin{array}{rrr}
1 & -1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{3 t}}{2}\left[\begin{array}{lll}
0 & 3 & 3 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[8] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right] \\
\lambda=-1,1,3 \quad e^{A t}=\frac{e^{-t}}{4}\left[\begin{array}{rrr}
1 & -3 & 1 \\
-1 & 3 & -1 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 0 \\
-1 & -1 & 1
\end{array}\right]+\frac{e^{3 t}}{4}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set C (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
\lambda=-1,1,3 \quad e^{A t}=\frac{e^{-t}}{8}\left[\begin{array}{rrr}
2 & -4 & 4 \\
-2 & 4 & -4 \\
1 & -2 & 2
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{rrr}
2 & 0 & -4 \\
0 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right]+\frac{e^{3 t}}{8}\left[\begin{array}{lll}
2 & 4 & 4 \\
2 & 4 & 4 \\
1 & 2 & 2
\end{array}\right] \\
y=\frac{e^{-t}}{8}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{r}
-4 \\
0 \\
2
\end{array}\right]+\frac{e^{3 t}}{8}\left[\begin{array}{l}
8 \\
8 \\
4
\end{array}\right]
\end{gathered}
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
0 & 2 & 0 \\
1 & 2 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\lambda=0,2,3 \quad e^{\text {At }}=\frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & -2 \\
0 & 0 & 0 \\
-1 & -1 & 2
\end{array}\right]+e^{2 t}\left[\begin{array}{rrr}
0 & -3 & 0 \\
0 & 1 & 0 \\
0 & -1 & 0
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{lll}
2 & 8 & 2 \\
0 & 0 & 0 \\
1 & 4 & 1
\end{array}\right] \\
y=\frac{1}{3}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+e^{2 t}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{l}
6 \\
0 \\
3
\end{array}\right]
\end{gathered}
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
2 & 2 & 1 \\
0 & 2 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\lambda=0,2,4 \quad e^{A t}=\frac{1}{8}\left[\begin{array}{rrr}
2 & -2 & 1 \\
-4 & 4 & -2 \\
4 & -4 & 2
\end{array}\right]+\frac{e^{2 t}}{4}\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 0 & 0 \\
-4 & 0 & 2
\end{array}\right]+\frac{e^{4 t}}{8}\left[\begin{array}{lll}
2 & 2 & 1 \\
4 & 4 & 2 \\
4 & 4 & 2
\end{array}\right] \\
y=\frac{1}{8}\left[\begin{array}{r}
5 \\
-10 \\
10
\end{array}\right]+\frac{e^{2 t}}{4}\left[\begin{array}{r}
3 \\
0 \\
-6
\end{array}\right]+\frac{e^{4 t}}{8}\left[\begin{array}{r}
5 \\
10 \\
10
\end{array}\right]
\end{gathered}
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 2 & 1 \\
2 & 2 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\lambda=0,2,3 \quad e^{A t}=\frac{1}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -2 & 2
\end{array}\right]+e^{2 t}\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 0 & 0 \\
-2 & 0 & 0
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{lll}
0 & 0 & 0 \\
6 & 2 & 1 \\
6 & 2 & 1
\end{array}\right] \\
y=\frac{1}{3}\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right]+e^{2 t}\left[\begin{array}{r}
2 \\
-4 \\
-4
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{r}
0 \\
13 \\
13
\end{array}\right]
\end{gathered}
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 0 \\
2 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\lambda=0,1,3 \quad e^{A t}=\frac{1}{3}\left[\begin{array}{rrr}
1 & -2 & 0 \\
-1 & 2 & 0 \\
-1 & 2 & 0
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & -3 & 2
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{lll}
4 & 4 & 0 \\
2 & 2 & 0 \\
5 & 5 & 0
\end{array}\right] \\
y=\frac{1}{3}\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{l}
0 \\
0 \\
-2
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{r}
8 \\
4 \\
10
\end{array}\right]
\end{gathered}
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
\lambda=0,1,3 \quad e^{\text {At }}=\frac{1}{3}\left[\begin{array}{rrr}
1 & -2 & 0 \\
-1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & -1 & 2
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{lll}
4 & 4 & 0 \\
2 & 2 & 0 \\
3 & 3 & 0
\end{array}\right] \\
y=\frac{1}{3}\left[\begin{array}{r}
-2 \\
2 \\
0
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]
\end{gathered}
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 1 \\
2 & 2 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$$
\begin{gathered}
\lambda=0,1,3 \quad e^{\text {At }}=\frac{1}{3}\left[\begin{array}{rrr}
-1 & -1 & 1 \\
2 & 2 & -2 \\
-2 & -2 & 2
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{rrr}
2 & 0 & -1 \\
-2 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 2 & 1 \\
4 & 4 & 2
\end{array}\right] \\
y=\frac{1}{3}\left[\begin{array}{r}
-1 \\
2 \\
-2
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{r}
5 \\
5 \\
10
\end{array}\right]
\end{gathered}
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
\lambda=0,1,3 \quad e^{A t}=\frac{1}{3}\left[\begin{array}{rrr}
1 & 0 & -1 \\
1 & 0 & -1 \\
-2 & 0 & 2
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 3 & 2 \\
1 & 3 & 2
\end{array}\right] \\
y=\frac{1}{3}\left[\begin{array}{r}
-1 \\
-1 \\
2
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right]+\frac{e^{3 t}}{6}\left[\begin{array}{l}
5 \\
5 \\
5
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set D (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 2
\end{array}\right] \\
\lambda=3,1,1 \quad A^{n}=\frac{3^{n}}{4}\left[\begin{array}{lll}
2 & 2 & 2 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{4}\left[\begin{array}{rrr}
2 & -2 & -2 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]+\frac{n}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
1 & -1 & -1 \\
-1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[2] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
2 & 1 & 2
\end{array}\right] \\
\lambda=4,1,1 \quad A^{n}=\frac{4^{n}}{9}\left[\begin{array}{lll}
3 & 3 & 3 \\
2 & 2 & 2 \\
4 & 4 & 4
\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}
6 & -3 & -3 \\
-2 & 7 & -2 \\
-4 & -4 & 5
\end{array}\right]+\frac{n}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-2 & 1 & 1 \\
2 & -1 & -1
\end{array}\right]
\end{gathered}
$$

[3] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
2 & 1 & 1 \\
1 & 0 & 2
\end{array}\right] \\
\lambda=3,1,1 \quad A^{n}=\frac{3^{n}}{4}\left[\begin{array}{lll}
2 & 0 & 2 \\
3 & 0 & 3 \\
2 & 0 & 2
\end{array}\right]+\frac{1}{4}\left[\begin{array}{rrr}
2 & 0 & -2 \\
-3 & 4 & -3 \\
-2 & 0 & 2
\end{array}\right]+\frac{n}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[4] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 2 & 0 \\
1 & 1 & 2
\end{array}\right] \\
\lambda=4,1,1 \quad A^{n}=\frac{4^{n}}{9}\left[\begin{array}{lll}
4 & 3 & 2 \\
4 & 3 & 2 \\
4 & 3 & 2
\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}
5 & -3 & -2 \\
-4 & 6 & -2 \\
-4 & -3 & 7
\end{array}\right]+\frac{n}{3}\left[\begin{array}{rrr}
-1 & 0 & 1 \\
2 & 0 & -2 \\
-1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

$$
\lambda=4,1,1 \quad A^{n}=\frac{4^{n}}{9}\left[\begin{array}{lll}
3 & 6 & 6 \\
2 & 4 & 4 \\
1 & 2 & 2
\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}
6 & -6 & -6 \\
-2 & 5 & -4 \\
-1 & -2 & 7
\end{array}\right]+\frac{n}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
1 & -1 & -1 \\
-1 & 1 & 1
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
\lambda=3,1,1 \quad A^{n}=\frac{3^{n}}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
2 & 0 & 0 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]+n\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[7] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 0 \\
2 & 2 & 2
\end{array}\right] \\
\lambda=4,1,1 \quad A^{n}=\frac{4^{n}}{9}\left[\begin{array}{lll}
4 & 4 & 2 \\
2 & 2 & 1 \\
6 & 6 & 3
\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}
5 & -4 & -2 \\
-2 & 7 & -1 \\
-6 & -6 & 6
\end{array}\right]+\frac{n}{3}\left[\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[8] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right] \\
\lambda=3,1,1 \quad A^{n}=\frac{3^{n}}{4}\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{4}\left[\begin{array}{rrr}
3 & -1 & -1 \\
-2 & 2 & -2 \\
-1 & -1 & 3
\end{array}\right]+\frac{n}{2}\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 0 & 0 \\
-1 & 1 & -1
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set E (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
2 & 1 & 2
\end{array}\right] \\
\lambda=3,1,1 \quad e^{A t}=\frac{e^{3 t}}{4}\left[\begin{array}{lll}
0 & 0 & 0 \\
3 & 2 & 2 \\
3 & 2 & 2
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{rrr}
4 & 0 & 0 \\
-3 & 2 & -2 \\
-3 & -2 & 2
\end{array}\right]+\frac{t e^{t}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[2] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \\
\lambda=3,1,1 \quad e^{\text {At }}=\frac{e^{3 t}}{2}\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\operatorname{te} e^{t}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[3] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
2 & 1 & 2
\end{array}\right] \\
\lambda=4,1,1 \quad e^{A t}=\frac{e^{4 t}}{9}\left[\begin{array}{lll}
3 & 3 & 3 \\
2 & 2 & 2 \\
4 & 4 & 4
\end{array}\right]+\frac{e^{t}}{9}\left[\begin{array}{rrr}
6 & -3 & -3 \\
-2 & 7 & -2 \\
-4 & -4 & 5
\end{array}\right]+\frac{t e^{t}}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-2 & 1 & 1 \\
2 & -1 & -1
\end{array}\right]
\end{gathered}
$$

[4] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 1 & 0
\end{array}\right] \\
\lambda=3,0,0 \quad e^{A t}=\frac{e^{3 t}}{9}\left[\begin{array}{lll}
2 & 3 & 1 \\
4 & 6 & 2 \\
2 & 3 & 1
\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}
7 & -3 & -1 \\
-4 & 3 & -2 \\
-2 & -3 & 8
\end{array}\right]+\frac{t}{3}\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right]
\end{gathered}
$$

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

$$
\lambda=4,1,1 \quad e^{A t}=\frac{e^{4 t}}{9}\left[\begin{array}{lll}
3 & 4 & 2 \\
3 & 4 & 2 \\
3 & 4 & 2
\end{array}\right]+\frac{e^{t}}{9}\left[\begin{array}{rrr}
6 & -4 & -2 \\
-3 & 5 & -2 \\
-3 & -4 & 7
\end{array}\right]+\frac{t e^{t}}{3}\left[\begin{array}{rrr}
0 & 2 & -2 \\
0 & -1 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 1 \\
2 & 1 & 1
\end{array}\right] \\
\lambda=0,2,2 \quad e^{\text {At }}=\frac{1}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]+t e^{2 t}\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[7] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
\lambda=0,2,2 \quad e^{\lambda t}=\frac{1}{4}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-1 & 2 & -2 \\
1 & -2 & 2
\end{array}\right]+\frac{e^{2 t}}{4}\left[\begin{array}{rrr}
4 & 0 & 0 \\
1 & 2 & 2 \\
-1 & 2 & 2
\end{array}\right]+\frac{t e^{2 t}}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
3 & 0 & 0 \\
3 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

$$
\lambda=3,1,1 \quad e^{A t}=\frac{e^{3 t}}{4}\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{rrr}
3 & -1 & -1 \\
-2 & 2 & -2 \\
-1 & -1 & 3
\end{array}\right]+\frac{t e^{t}}{2}\left[\begin{array}{rrr}
-1 & 1 & -1 \\
0 & 0 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

3×3 Exercise Set F (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
\lambda=3,1,1 \quad e^{A t}=\frac{e^{3 t}}{2}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & -1 \\
0 & 0 & 2
\end{array}\right]+t e^{t}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
y=\frac{e^{3 t}}{2}\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]+\frac{e^{t}}{2}\left[\begin{array}{r}
-2 \\
0 \\
2
\end{array}\right]+t e^{t}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 1 & 2 \\
1 & 0 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\lambda=3,1,1 \quad e^{A t}=\frac{e^{3 t}}{4}\left[\begin{array}{lll}
2 & 0 & 2 \\
3 & 0 & 3 \\
2 & 0 & 2
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{rrr}
2 & 0 & -2 \\
-3 & 4 & -3 \\
-2 & 0 & 2
\end{array}\right]+\frac{t e^{t}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
y=\frac{e^{3 t}}{4}\left[\begin{array}{l}
4 \\
6 \\
4
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{r}
0 \\
-2 \\
0
\end{array}\right]+\frac{t e^{t}}{2}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
2 & 1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\lambda=4,1,1 \quad e^{\lambda t}=\frac{e^{4 t}}{9}\left[\begin{array}{lll}
3 & 3 & 3 \\
2 & 2 & 2 \\
4 & 4 & 4
\end{array}\right]+\frac{e^{t}}{9}\left[\begin{array}{rrr}
6 & -3 & -3 \\
-2 & 7 & -2 \\
-4 & -4 & 5
\end{array}\right]+\frac{t e^{t}}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-2 & 1 & 1 \\
2 & -1 & -1
\end{array}\right] \\
y=\frac{e^{4 t}}{9}\left[\begin{array}{r}
9 \\
6 \\
12
\end{array}\right]+\frac{e^{t}}{9}\left[\begin{array}{r}
9 \\
-6 \\
-3
\end{array}\right]+\frac{t e^{t}}{3}\left[\begin{array}{r}
0 \\
-3 \\
3
\end{array}\right]
\end{gathered}
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
\lambda=3,0,0 \quad e^{A t}=\frac{e^{3 t}}{9}\left[\begin{array}{lll}
3 & 3 & 3 \\
4 & 4 & 4 \\
2 & 2 & 2
\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}
6 & -3 & -3 \\
-4 & 5 & -4 \\
-2 & -2 & 7
\end{array}\right]+\frac{t}{3}\left[\begin{array}{rrr}
0 & 0 & 0 \\
2 & -1 & -1 \\
-2 & 1 & 1
\end{array}\right] \\
y=\frac{e^{3 t}}{9}\left[\begin{array}{l}
6 \\
8 \\
4
\end{array}\right]+\frac{1}{9}\left[\begin{array}{r}
-6 \\
1 \\
5
\end{array}\right]+\frac{t}{3}\left[\begin{array}{r}
0 \\
-2 \\
2
\end{array}\right]
\end{gathered}
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 0 \\
2 & 2 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \\
\lambda=4,1,1 \quad e^{A t}=\frac{e^{4 t}}{9}\left[\begin{array}{lll}
4 & 4 & 2 \\
2 & 2 & 1 \\
6 & 6 & 3
\end{array}\right]+\frac{e^{t}}{9}\left[\begin{array}{rrr}
5 & -4 & -2 \\
-2 & 7 & -1 \\
-6 & -6 & 6
\end{array}\right]+\frac{t e^{t}}{3}\left[\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \\
y=\frac{e^{4 t}}{9}\left[\begin{array}{r}
8 \\
4 \\
12
\end{array}\right]+\frac{e^{t}}{9}\left[\begin{array}{r}
-8 \\
5 \\
6
\end{array}\right]+\frac{t e^{t}}{3}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
\end{gathered}
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
2 & 1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\lambda=3,1,1 \quad e^{\text {At }}=\frac{e^{3 t}}{4}\left[\begin{array}{lll}
0 & 0 & 0 \\
3 & 2 & 2 \\
3 & 2 & 2
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{rrr}
4 & 0 & 0 \\
-3 & 2 & -2 \\
-3 & -2 & 2
\end{array}\right]+\frac{t e^{t}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \\
y=\frac{e^{3 t}}{4}\left[\begin{array}{l}
0 \\
7 \\
7
\end{array}\right]+\frac{e^{t}}{4}\left[\begin{array}{r}
4 \\
-3 \\
-3
\end{array}\right]+\frac{t e^{t}}{2}\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]
\end{gathered}
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{gathered}
\lambda=0,2,2 \quad e^{A t}=\frac{1}{2}\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]+t e^{2 t}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right] \\
y=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]+t e^{2 t}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
\lambda=3,0,0 \quad e^{A t}=\frac{e^{3 t}}{9}\left[\begin{array}{lll}
2 & 4 & 3 \\
2 & 4 & 3 \\
2 & 4 & 3
\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}
7 & -4 & -3 \\
-2 & 5 & -3 \\
-2 & -4 & 6
\end{array}\right]+\frac{t}{3}\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & -1 & 0 \\
-2 & 2 & 0
\end{array}\right] \\
y=\frac{e^{3 t}}{9}\left[\begin{array}{l}
7 \\
7 \\
7
\end{array}\right]+\frac{1}{9}\left[\begin{array}{r}
-7 \\
2 \\
2
\end{array}\right]+\frac{t}{3}\left[\begin{array}{r}
-1 \\
-1 \\
2
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set G (identical roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 3 & 3 \\
-2 & 3 & 1 \\
2 & -1 & 1
\end{array}\right] \\
\lambda=2,2,2
\end{gathered}
$$

$$
A^{n}=2^{n}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+n 2^{n-1}\left[\begin{array}{rrr}
0 & 3 & 3 \\
-2 & 1 & 1 \\
2 & -1 & -1
\end{array}\right]+\frac{n(n-1) 2^{n-2}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -6 & -6 \\
0 & 6 & 6
\end{array}\right]
$$

[2] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & -1 & 1 \\
2 & -2 & 1 \\
1 & -2 & -2
\end{array}\right] \\
\lambda=-1,-1,-1 \\
A^{n}=(-1)^{n}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+n(-1)^{n-1}\left[\begin{array}{rrr}
2 & -1 & 1 \\
2 & -1 & 1 \\
1 & -2 & -1
\end{array}\right]+\frac{n(n-1)(-1)^{n-2}}{2}\left[\begin{array}{rrr}
3 & -3 & 0 \\
3 & -3 & 0 \\
-3 & 3 & 0
\end{array}\right]
\end{gathered}
$$

[3] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
3 & 3 & -2 \\
-1 & -1 & -2 \\
1 & 1 & -2
\end{array}\right] \\
\lambda=0,0,0 \\
A^{n}=0^{n}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+n 0^{n-1}\left[\begin{array}{rrr}
3 & 3 & -2 \\
-1 & -1 & -2 \\
1 & 1 & -2
\end{array}\right]+\frac{n(n-1) 0^{n-2}}{2}\left[\begin{array}{rrr}
4 & 4 & -8 \\
-4 & -4 & 8 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[4] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & -2 & -1 \\
1 & 3 & 1
\end{array}\right] \\
\lambda=0,0,0
\end{gathered}
$$

$$
A^{n}=0^{n}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+n 0^{n-1}\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & -2 & -1 \\
1 & 3 & 1
\end{array}\right]+\frac{n(n-1) 0^{n-2}}{2}\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right]
$$

[5] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
3 & 2 & 2 \\
-2 & -1 & -2 \\
3 & 3 & 1
\end{array}\right] \\
\lambda=1,1,1 \\
A^{n}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+n\left[\begin{array}{rrr}
2 & 2 & 2 \\
-2 & -2 & -2 \\
3 & 3 & 0
\end{array}\right]+\frac{n(n-1)}{2}\left[\begin{array}{rrr}
6 & 6 & 0 \\
-6 & -6 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[6] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & -1 & 1 \\
-1 & -2 & -1
\end{array}\right] \\
\lambda=0,0,0 \\
A^{n}=0^{n}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+n 0^{n-1}\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & -1 & 1 \\
-1 & -2 & -1
\end{array}\right]+\frac{n(n-1) 0^{n-2}}{2}\left[\begin{array}{rrr}
3 & 3 & 0 \\
-3 & -3 & 0 \\
3 & 3 & 0
\end{array}\right]
\end{gathered}
$$

[7] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-1 & 2 & 1 \\
-1 & 2 & 2 \\
1 & -1 & 2
\end{array}\right] \\
\lambda=1,1,1 \\
A^{n}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+n\left[\begin{array}{rrr}
-2 & 2 & 1 \\
-1 & 1 & 2 \\
1 & -1 & 1
\end{array}\right]+\frac{n(n-1)}{2}\left[\begin{array}{rrr}
3 & -3 & 3 \\
3 & -3 & 3 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[8] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & -2 & -1 \\
2 & 2 & -1 \\
-2 & -2 & 2
\end{array}\right]
$$

$$
\begin{gathered}
\lambda=2,2,2 \\
A^{n}=2^{n}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+n 2^{n-1}\left[\begin{array}{rrr}
0 & -2 & -1 \\
2 & 0 & -1 \\
-2 & -2 & 0
\end{array}\right]+\frac{n(n-1) 2^{n-2}}{2}\left[\begin{array}{rrr}
-2 & 2 & 2 \\
2 & -2 & -2 \\
-4 & 4 & 4
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set H (identical roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 3 & 3 \\
1 & 1 & -1 \\
-1 & 1 & 3
\end{array}\right] \\
\lambda=2,2,2 \\
e^{\text {At }}=e^{2 t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{2 t}\left[\begin{array}{rrr}
0 & 3 & 3 \\
1 & -1 & -1 \\
-1 & 1 & 1
\end{array}\right]+\frac{\mathrm{t}^{2} e^{2 \mathrm{t}}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 3 & 3 \\
0 & -3 & -3
\end{array}\right]
\end{gathered}
$$

[2] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-2 & 2 & 2 \\
-1 & 1 & 3 \\
1 & -1 & 1
\end{array}\right] \\
\lambda=0,0,0 \\
e^{\text {At }}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\mathrm{t}\left[\begin{array}{rrr}
-2 & 2 & 2 \\
-1 & 1 & 3 \\
1 & -1 & 1
\end{array}\right]+\frac{\mathrm{t}^{2}}{2}\left[\begin{array}{rrr}
4 & -4 & 4 \\
4 & -4 & 4 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[3] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-1 & 3 & 2 \\
2 & 1 & -2 \\
-2 & 3 & 3
\end{array}\right] \\
\lambda=1,1,1 \\
e^{A t}=e^{t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{t}\left[\begin{array}{rrr}
-2 & 3 & 2 \\
2 & 0 & -2 \\
-2 & 3 & 2
\end{array}\right]+\frac{\mathrm{t}^{2} e^{t}}{2}\left[\begin{array}{rrr}
6 & 0 & -6 \\
0 & 0 & 0 \\
6 & 0 & -6
\end{array}\right]
\end{gathered}
$$

[4] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-2 & 2 & 2 \\
1 & -2 & 1 \\
-2 & 2 & -2
\end{array}\right] \\
\lambda=-2,-2,-2
\end{gathered}
$$

$$
e^{A t}=e^{-2 t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{-2 t}\left[\begin{array}{rrr}
0 & 2 & 2 \\
1 & 0 & 1 \\
-2 & 2 & 0
\end{array}\right]+\frac{t^{2} e^{-2 t}}{2}\left[\begin{array}{rrr}
-2 & 4 & 2 \\
-2 & 4 & 2 \\
2 & -4 & -2
\end{array}\right]
$$

[5] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
-2 & -1 & 1 \\
-1 & -2 & 3 \\
-1 & -1 & 1
\end{array}\right] \\
\lambda=-1,-1,-1 \\
e^{A t}=e^{-t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{-t}\left[\begin{array}{lll}
-1 & -1 & 1 \\
-1 & -1 & 3 \\
-1 & -1 & 2
\end{array}\right]+\frac{t^{2} e^{-t}}{2}\left[\begin{array}{rrr}
1 & 1 & -2 \\
-1 & -1 & 2 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[6] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 2 & 2 \\
1 & 2 & -2 \\
1 & 2 & 2
\end{array}\right] \\
\lambda=2,2,2 \\
e^{A t}=e^{2 t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{2 t}\left[\begin{array}{rrr}
0 & 2 & 2 \\
1 & 0 & -2 \\
1 & 2 & 0
\end{array}\right]+\frac{t^{2} e^{2 t}}{2}\left[\begin{array}{rrr}
4 & 4 & -4 \\
-2 & -2 & 2 \\
2 & 2 & -2
\end{array}\right]
\end{gathered}
$$

[7] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
3 & 2 & 2 \\
-2 & -1 & -2 \\
-2 & -2 & 1
\end{array}\right] \\
\lambda=1,1,1 \\
e^{\text {At }}=e^{t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{t}\left[\begin{array}{rrr}
2 & 2 & 2 \\
-2 & -2 & -2 \\
-2 & -2 & 0
\end{array}\right]+\frac{t^{2} e^{t}}{2}\left[\begin{array}{rrr}
-4 & -4 & 0 \\
4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & -2 & -2 \\
-1 & 2 & 1 \\
2 & 2 & 2
\end{array}\right]
$$

$$
\begin{gathered}
\lambda=2,2,2 \\
e^{\text {At }}=e^{2 \mathrm{t}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\mathrm{te} \mathrm{e}^{2 \mathrm{t}}\left[\begin{array}{rrr}
0 & -2 & -2 \\
-1 & 0 & 1 \\
2 & 2 & 0
\end{array}\right]+\frac{\mathrm{t}^{2} e^{2 t}}{2}\left[\begin{array}{rrr}
-2 & -4 & -2 \\
2 & 4 & 2 \\
-2 & -4 & -2
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set I (identical roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
-1 & 3 & 1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
\lambda=1,1,1 \\
e^{A t}=e^{t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{\mathrm{t}}\left[\begin{array}{lll}
-2 & 3 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]+\frac{\mathrm{t}^{2} e^{\mathrm{t}}}{2}\left[\begin{array}{lll}
0 & -2 & 2 \\
0 & -1 & 1 \\
0 & -1 & 1
\end{array}\right] \\
y=e^{\mathrm{t}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\mathrm{te}^{\mathrm{t}}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\frac{\mathrm{t}^{2} \mathrm{e}^{\mathrm{t}}}{2}\left[\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right]
\end{gathered}
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & -2 & -2 \\
2 & 2 & -2 \\
-1 & -1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
\lambda=2,2,2 \\
e^{A t}=e^{2 t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{2 t}\left[\begin{array}{rrr}
0 & -2 & -2 \\
2 & 0 & -2 \\
-1 & -1 & 0
\end{array}\right]+\frac{t^{2} e^{2 t}}{2}\left[\begin{array}{rrr}
-2 & 2 & 4 \\
2 & -2 & -4 \\
-2 & 2 & 4
\end{array}\right] \\
y=e^{2 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+t e^{2 t}\left[\begin{array}{r}
-2 \\
2 \\
-2
\end{array}\right]+\frac{t^{2} e^{2 t}}{2}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & -2 & -2 \\
2 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\lambda=0,0,0
\end{gathered}
$$

$$
\begin{gathered}
e^{A t}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\mathrm{t}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & -2 & -2 \\
2 & 1 & 1
\end{array}\right]+\frac{\mathrm{t}^{2}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
-3 & 3 & 3 \\
3 & -3 & -3
\end{array}\right] \\
\mathrm{y}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+\mathrm{t}\left[\begin{array}{r}
1 \\
-4 \\
5
\end{array}\right]+\frac{\mathrm{t}^{2}}{2}\left[\begin{array}{r}
0 \\
-3 \\
3
\end{array}\right]
\end{gathered}
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & 1 \\
-1 & 2 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
\lambda=1,1,1 \\
e^{A t}=e^{\mathrm{t}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\mathrm{te}^{\mathrm{t}}\left[\begin{array}{rrr}
1 & -2 & 3 \\
1 & -2 & 1 \\
-1 & 2 & 1
\end{array}\right]+\frac{\mathrm{t}^{2} e^{\mathrm{t}}}{2}\left[\begin{array}{rrr}
-4 & 8 & 4 \\
-2 & 4 & 2 \\
0 & 0 & 0
\end{array}\right] \\
y=e^{\mathrm{t}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\mathrm{te}^{\mathrm{t}}\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]+\frac{\mathrm{t}^{2} e^{\mathrm{t}}}{2}\left[\begin{array}{l}
4 \\
2 \\
0
\end{array}\right]
\end{gathered}
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-2 & -1 & 1 \\
2 & 1 & -1 \\
2 & 3 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \\
\lambda=0,0,0 \\
e^{\text {At }}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\mathrm{t}\left[\begin{array}{rrr}
-2 & -1 & 1 \\
2 & 1 & -1 \\
2 & 3 & 1
\end{array}\right]+\frac{\mathrm{t}^{2}}{2}\left[\begin{array}{rrr}
4 & 4 & 0 \\
-4 & -4 & 0 \\
4 & 4 & 0
\end{array}\right] \\
y=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+\mathrm{t}\left[\begin{array}{r}
1 \\
-1 \\
5
\end{array}\right]+\frac{\mathrm{t}^{2}}{2}\left[\begin{array}{r}
4 \\
-4 \\
4
\end{array}\right]
\end{gathered}
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rrr}
1 & 3 & 1 \\
-1 & 1 & 1 \\
2 & -2 & -2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

$$
\lambda=0,0,0
$$

$$
\begin{gathered}
e^{A t}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\mathrm{t}\left[\begin{array}{rrr}
1 & 3 & 1 \\
-1 & 1 & 1 \\
2 & -2 & -2
\end{array}\right]+\frac{\mathrm{t}^{2}}{2}\left[\begin{array}{rrr}
0 & 4 & 2 \\
0 & -4 & -2 \\
0 & 8 & 4
\end{array}\right] \\
y=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+\mathrm{t}\left[\begin{array}{r}
3 \\
1 \\
-2
\end{array}\right]+\frac{\mathrm{t}^{2}}{2}\left[\begin{array}{r}
4 \\
-4 \\
8
\end{array}\right]
\end{gathered}
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-2 & 3 & 2 \\
-1 & 2 & -2 \\
-1 & 1 & 3
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\lambda=1,1,1 \\
e^{A t}=e^{t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{t}\left[\begin{array}{rrr}
-3 & 3 & 2 \\
-1 & 1 & -2 \\
-1 & 1 & 2
\end{array}\right]+\frac{\mathrm{t}^{2} e^{t}}{2}\left[\begin{array}{rrr}
4 & -4 & -8 \\
4 & -4 & -8 \\
0 & 0 & 0
\end{array}\right] \\
y=e^{\mathrm{t}}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+t e^{\mathrm{t}}\left[\begin{array}{r}
-4 \\
-4 \\
0
\end{array}\right]+\frac{\mathrm{t}^{2} e^{\mathrm{t}}}{2}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & -1 & 2 \\
-1 & -1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
\lambda=1,1,1 \\
e^{A t}=e^{t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t e^{\mathrm{t}}\left[\begin{array}{rrr}
1 & 1 & -1 \\
-2 & -2 & 2 \\
-1 & -1 & 1
\end{array}\right]+\frac{\mathrm{t}^{2} e^{\mathrm{t}}}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
y=e^{\mathrm{t}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\mathrm{te} \mathrm{e}^{\mathrm{t}}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\frac{\mathrm{t}^{2} e^{\mathrm{t}}}{2}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set J (symmetric matrices)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \\
\lambda=0,2,3 \quad A^{n}=\frac{0^{n}}{6}\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{array}\right]+\frac{2^{n}}{2}\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right]+\frac{3^{n}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[2] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-3 & 1 & -1 \\
1 & -2 & 0 \\
-1 & 0 & -2
\end{array}\right] \\
\lambda=-4,-2,-1 \quad A^{n}=\frac{(-4)^{n}}{6}\left[\begin{array}{rrr}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right]+\frac{(-2)^{n}}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]+\frac{(-1)^{n}}{3}\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]
\end{gathered}
$$

[3] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \\
\lambda=0,1,3 \quad A^{n}=\frac{0^{n}}{3}\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]+\frac{3^{n}}{6}\left[\begin{array}{rrr}
4 & 2 & -2 \\
2 & 1 & -1 \\
-2 & -1 & 1
\end{array}\right]
\end{gathered}
$$

[4] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
3 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right] \\
\lambda=1,3,4 \quad A^{n}=\frac{1}{6}\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 4 & -2 \\
-1 & -2 & 1
\end{array}\right]+\frac{3^{n}}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]+\frac{4^{n}}{3}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
-2 & 1 & 0 \\
1 & -3 & -1 \\
0 & -1 & -2
\end{array}\right]
$$

$$
\lambda=-4,-2,-1 \quad A^{n}=\frac{(-4)^{n}}{6}\left[\begin{array}{rrr}
1 & -2 & -1 \\
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right]+\frac{(-2)^{n}}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]+\frac{(-1)^{n}}{3}\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-1 & 0 & -1 \\
0 & -1 & 1 \\
-1 & 1 & -2
\end{array}\right] \\
\lambda=-3,-1,0 \quad A^{n}=\frac{(-3)^{n}}{6}\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]+\frac{(-1)^{n}}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{0^{n}}{3}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[7] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
3 & 0 & -1 \\
0 & 3 & 1 \\
-1 & 1 & 2
\end{array}\right] \\
\lambda=1,3,4 \quad A^{n}=\frac{1}{6}\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]+\frac{3^{n}}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{4^{n}}{3}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[8] Find A^{n} where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 0 & 1 \\
0 & 2 & -1 \\
1 & -1 & 3
\end{array}\right] \\
\lambda=1,2,4 \quad A^{n}=\frac{1}{3}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]+\frac{2^{n}}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{4^{n}}{6}\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set K (symmetric matrices)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-3 & 1 & 0 \\
1 & -2 & -1 \\
0 & -1 & -3
\end{array}\right] \\
\lambda=-4,-3,-1 \quad e^{A t}=\frac{e^{-4 t}}{3}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]+\frac{e^{-3 t}}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]+\frac{e^{-t}}{6}\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 4 & -2 \\
-1 & -2 & 1
\end{array}\right]
\end{gathered}
$$

[2] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & -2 & 0 \\
-1 & 0 & -2
\end{array}\right] \\
\lambda=-3,-2,0 \quad e^{\text {At }}=\frac{e^{-3 t}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{e^{-2 t}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\frac{1}{6}\left[\begin{array}{rrr}
4 & -2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[3] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-2 & 1 & -1 \\
1 & -1 & 0 \\
-1 & 0 & -1
\end{array}\right] \\
\lambda=-3,-1,0 \quad e^{A t}=\frac{e^{-3 t}}{6}\left[\begin{array}{rrr}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right]+\frac{e^{-t}}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]
\end{gathered}
$$

[4] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 1 & 3
\end{array}\right] \\
\lambda=1,2,4 \quad e^{A t}=\frac{e^{t}}{3}\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{4 t}}{6}\left[\begin{array}{rrr}
1 & -1 & -2 \\
-1 & 1 & 2 \\
-2 & 2 & 4
\end{array}\right]
\end{gathered}
$$

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

$$
\lambda=0,2,3 \quad e^{A t}=\frac{1}{6}\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-2 & 1 & -1 \\
1 & -3 & 0 \\
-1 & 0 & -3
\end{array}\right] \\
\lambda=-4,-3,-1 \quad e^{A t}=\frac{e^{-4 t}}{3}\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]+\frac{e^{-3 t}}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]+\frac{e^{-t}}{6}\left[\begin{array}{rrr}
4 & 2 & -2 \\
2 & 1 & -1 \\
-2 & -1 & 1
\end{array}\right]
\end{gathered}
$$

[7] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right] \\
\lambda=0,2,3 \quad e^{A t}=\frac{1}{6}\left[\begin{array}{rrr}
4 & -2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right]+\frac{e^{2 t}}{2}\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\frac{e^{3 t}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

[8] Find $e^{A t}$ where A is the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-2 & 0 & 1 \\
0 & -2 & 1 \\
1 & 1 & -3
\end{array}\right] \\
\lambda=-4,-2,-1 \quad e^{A t}=\frac{e^{-4 t}}{6}\left[\begin{array}{rrr}
1 & 1 & -2 \\
1 & 1 & -2 \\
-2 & -2 & 4
\end{array}\right]+\frac{e^{-2 t}}{2}\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{e^{-t}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

3×3 Exercise Set L (quadratic forms)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Express the quadratic form

$$
2 x^{2}+2 y^{2}+2 x z+2 y z+z^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{gathered}
\lambda=0,2,3 \quad A= \\
{\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]} \\
\\
(x-y)^{2}+(x+y+z)^{2}
\end{gathered}
$$

[2] Express the quadratic form

$$
x^{2}-2 x y+2 y^{2}+2 y z+z^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{aligned}
\lambda=0,1,3 \quad A= & {\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
1 & -2 & -1 \\
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right] } \\
& \frac{1}{2}(x+z)^{2}+\frac{1}{2}(x-2 y-z)^{2}
\end{aligned}
$$

[3] Express the quadratic form

$$
-3 x^{2}+2 x y-2 y^{2}-2 y z-3 z^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{aligned}
\lambda=-4,-3,-1 \quad A= & {\left[\begin{array}{rrr}
-3 & 1 & 0 \\
1 & -2 & -1 \\
0 & -1 & -3
\end{array}\right]=-\frac{4}{3}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]-\frac{3}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]-\frac{1}{6}\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 4 & -2 \\
-1 & -2 & 1
\end{array}\right] } \\
& -\frac{4}{3}(x-y-z)^{2}-\frac{3}{2}(x+z)^{2}-\frac{1}{6}(x+2 y-z)^{2}
\end{aligned}
$$

[4] Express the quadratic form

$$
-2 x^{2}-2 y^{2}-2 x z+2 y z-3 z^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{aligned}
\lambda=-4,-2,-1 \quad A= & {\left[\begin{array}{rrr}
-2 & 0 & -1 \\
0 & -2 & 1 \\
-1 & 1 & -3
\end{array}\right]=-\frac{2}{3}\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]-\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]-\frac{1}{3}\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right] } \\
& -\frac{2}{3}(x-y+2 z)^{2}-(x+y)^{2}-\frac{1}{3}(x-y-z)^{2}
\end{aligned}
$$

[5] Express the quadratic form

$$
-x^{2}-y^{2}+2 x z-2 y z-2 z^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{aligned}
\lambda=-3,-1,0 \quad A= & {\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & -1 & -1 \\
1 & -1 & -2
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{rrr}
1 & -1 & -2 \\
-1 & 1 & 2 \\
-2 & 2 & 4
\end{array}\right]-\frac{1}{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] } \\
& -\frac{1}{2}(x-y-2 z)^{2}-\frac{1}{2}(x+y)^{2}
\end{aligned}
$$

[6] Express the quadratic form

$$
2 x^{2}-2 x y+y^{2}+2 x z+z^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{aligned}
\lambda=0,1,3 \quad A= & {\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right] } \\
& \frac{1}{2}(y+z)^{2}+\frac{1}{2}(2 x-y+z)^{2}
\end{aligned}
$$

[7] Express the quadratic form

$$
2 x^{2}-2 x y+y^{2}+2 y z+2 z^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{aligned}
\lambda=0,2,3 \quad A= & {\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]=} \\
& (x+z)^{2}+(x-y-z)^{2}
\end{aligned}
$$

[8] Express the quadratic form

$$
-x^{2}+2 x y-2 y^{2}-2 y z-z^{2}
$$

as a sum of squares of othogonal linear forms.

$$
\begin{aligned}
\lambda=-3,-1,0 \quad A= & {\left[\begin{array}{rrr}
-1 & 1 & 0 \\
1 & -2 & -1 \\
0 & -1 & -1
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{rrr}
1 & -2 & -1 \\
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right] } \\
& -\frac{1}{2}(x-2 y-z)^{2}-\frac{1}{2}(x+z)^{2}
\end{aligned}
$$

