2×2 Exercise Set A (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right]
$$

[2] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
1 & -1 \\
-3 & -1
\end{array}\right]
$$

[3] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right]
$$

[4] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
2 & 2 \\
-2 & -3
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
-3 & 1 \\
-2 & 0
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]
$$

[8] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right]
$$

2×2 Exercise Set B (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
3 & 1 \\
-3 & -1
\end{array}\right]
$$

[2] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 2
\end{array}\right]
$$

[3] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-1 & -3 \\
-2 & 0
\end{array}\right]
$$

[4] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
3 & 3 \\
-1 & -1
\end{array}\right]
$$

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
1 & -1 \\
-3 & -1
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
-2 & 2 \\
-3 & 3
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
2 & -2 \\
3 & -3
\end{array}\right]
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]
$$

2×2 Exercise Set C (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{ll}
0 & -1 \\
2 & -3
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
1 & -1 \\
-3 & -1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
-1 & 1 \\
2 & -2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{ll}
-2 & -1 \\
-2 & -1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
-1 & -2 \\
1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

2×2 Exercise Set D (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
1 & 3 \\
-3 & -5
\end{array}\right]
$$

[2] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

[3] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
0 & -1 \\
1 & 2
\end{array}\right]
$$

[4] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
2 & -1 \\
4 & 6
\end{array}\right]
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
6 & 5 \\
-5 & -4
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
6 & 1 \\
-1 & 4
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
4 & -5 \\
5 & -6
\end{array}\right]
$$

[8] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
-5 & -4 \\
1 & -1
\end{array}\right]
$$

2×2 Exercise Set E (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
5 & -4 \\
4 & -3
\end{array}\right]
$$

[2] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-5 & -4 \\
4 & 3
\end{array}\right]
$$

[3] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-3 & -1 \\
1 & -1
\end{array}\right]
$$

[4] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
5 & 1 \\
-1 & 3
\end{array}\right]
$$

[5] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
-4 & 3 \\
-3 & 2
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right]
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-1 & 2 \\
-2 & -5
\end{array}\right]
$$

2×2 Exercise Set F (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013

[1] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
5 & 4 \\
-4 & -3
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
2 & -4 \\
1 & 6
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
-1 & 4 \\
-1 & -5
\end{array}\right], \quad y(0)=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
-2 & -1 \\
4 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right], \quad y(0)=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
-5 & -4 \\
4 & 3
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rr}
-4 & -3 \\
3 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

2×2 Exercise Set G (symmetric matrices)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
-3 & -2 \\
-2 & -3
\end{array}\right]
$$

[2] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
-1 & 2 \\
2 & 2
\end{array}\right]
$$

[3] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
1 & -2 \\
-2 & 4
\end{array}\right]
$$

[4] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
-4 & -2 \\
-2 & -1
\end{array}\right]
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
-3 & 1 \\
1 & -3
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
-2 & -1 \\
-1 & -2
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rr}
-4 & 1 \\
1 & -4
\end{array}\right]
$$

[8] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right]
$$

2×2 Exercise Set H (symmetric matrices)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-3 & -2 \\
-2 & 0
\end{array}\right]
$$

[2] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right]
$$

[3] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-1 & 2 \\
2 & -1
\end{array}\right]
$$

[4] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-1 & 2 \\
2 & -4
\end{array}\right]
$$

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rr}
-1 & -2 \\
-2 & 2
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
-5 & -2 \\
-2 & -2
\end{array}\right]
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -5
\end{array}\right]
$$

2×2 Exercise Set I (quadratic forms)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Express the quadratic form

$$
3 x^{2}-2 x y+3 y^{2}
$$

as a sum of squares of othogonal linear forms.
[2] Express the quadratic form

$$
-3 x^{2}+2 x y-3 y^{2}
$$

as a sum of squares of othogonal linear forms.
[3] Express the quadratic form

$$
-x^{2}-4 x y-y^{2}
$$

as a sum of squares of othogonal linear forms.
[4] Express the quadratic form

$$
2 x^{2}-4 x y+5 y^{2}
$$

as a sum of squares of othogonal linear forms.
[5] Express the quadratic form

$$
2 x^{2}+4 x y-y^{2}
$$

as a sum of squares of othogonal linear forms.
[6] Express the quadratic form

$$
3 x^{2}+2 x y+3 y^{2}
$$

as a sum of squares of othogonal linear forms.
[7] Express the quadratic form

$$
-2 x^{2}+4 x y+y^{2}
$$

as a sum of squares of othogonal linear forms.
[8] Express the quadratic form

$$
-x^{2}-8 x y-y^{2}
$$

as a sum of squares of othogonal linear forms.

2×2 Exercise Set J (recurrence relations)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Solve the recurrence relation

$$
f(0)=a, \quad f(1)=b, \quad f(n)=-5 f(n-1)-4 f(n-2)
$$

[2] Solve the recurrence relation

$$
f(0)=a, \quad f(1)=b, \quad f(n)=6 f(n-1)-5 f(n-2)
$$

[3] Solve the recurrence relation

$$
f(0)=a, \quad f(1)=b, \quad f(n)=-6 f(n-1)-8 f(n-2)
$$

[4] Solve the recurrence relation

$$
f(0)=a, \quad f(1)=b, \quad f(n)=-4 f(n-1)+5 f(n-2)
$$

[5] Solve the recurrence relation

$$
f(0)=a, \quad f(1)=b, \quad f(n)=-f(n-1)+6 f(n-2)
$$

[6] Solve the recurrence relation

$$
f(0)=a, \quad f(1)=b, \quad f(n)=-6 f(n-1)+7 f(n-2)
$$

[7] Solve the recurrence relation

$$
f(0)=a, \quad f(1)=b, \quad f(n)=-6 f(n-1)-5 f(n-2)
$$

[8] Solve the recurrence relation

$$
f(0)=a, \quad f(1)=b, \quad f(n)=f(n-1)+6 f(n-2)
$$

3×3 Exercise Set A (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

[2] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 0 \\
2 & 2 & 1
\end{array}\right]
$$

[3] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]
$$

[4] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
2 & 1 & 1 \\
2 & 0 & 1
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
2 & 2 & 2
\end{array}\right]
$$

[8] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 2 & 2 \\
2 & 1 & 1
\end{array}\right]
$$

3×3 Exercise Set B (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

[2] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

[3] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

[4] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 2 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 1 \\
0 & 1 & 0 \\
2 & 2 & 1
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 1 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

3×3 Exercise Set C (distinct roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
0 & 2 & 0 \\
1 & 2 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
2 & 2 & 1 \\
0 & 2 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 2 & 1 \\
2 & 2 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 0 \\
2 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 1 \\
2 & 2 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

3×3 Exercise Set D (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

[2] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
2 & 1 & 2
\end{array}\right]
$$

[3] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
2 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

[4] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 2 & 0 \\
1 & 1 & 2
\end{array}\right]
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 0 \\
2 & 2 & 2
\end{array}\right]
$$

[8] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

3×3 Exercise Set E (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
2 & 1 & 2
\end{array}\right]
$$

[2] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

[3] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
2 & 1 & 2
\end{array}\right]
$$

[4] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

3×3 Exercise Set F (repeated roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 1 & 2 \\
1 & 0 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
2 & 1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 0 \\
2 & 2 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
2 & 1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

3×3 Exercise Set G (identical roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 3 & 3 \\
-2 & 3 & 1 \\
2 & -1 & 1
\end{array}\right]
$$

[2] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & -2 & 1 \\
1 & -2 & -2
\end{array}\right]
$$

[3] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
3 & 3 & -2 \\
-1 & -1 & -2 \\
1 & 1 & -2
\end{array}\right]
$$

[4] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & -2 & -1 \\
1 & 3 & 1
\end{array}\right]
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
3 & 2 & 2 \\
-2 & -1 & -2 \\
3 & 3 & 1
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & -1 & 1 \\
-1 & -2 & -1
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
-1 & 2 & 1 \\
-1 & 2 & 2 \\
1 & -1 & 2
\end{array}\right]
$$

[8] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & -2 & -1 \\
2 & 2 & -1 \\
-2 & -2 & 2
\end{array}\right]
$$

3×3 Exercise Set H (identical roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 3 & 3 \\
1 & 1 & -1 \\
-1 & 1 & 3
\end{array}\right]
$$

[2] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
-2 & 2 & 2 \\
-1 & 1 & 3 \\
1 & -1 & 1
\end{array}\right]
$$

[3] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
-1 & 3 & 2 \\
2 & 1 & -2 \\
-2 & 3 & 3
\end{array}\right]
$$

[4] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
-2 & 2 & 2 \\
1 & -2 & 1 \\
-2 & 2 & -2
\end{array}\right]
$$

[5] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
-2 & -1 & 1 \\
-1 & -2 & 3 \\
-1 & -1 & 1
\end{array}\right]
$$

[6] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 2 & 2 \\
1 & 2 & -2 \\
1 & 2 & 2
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
3 & 2 & 2 \\
-2 & -1 & -2 \\
-2 & -2 & 1
\end{array}\right]
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & -2 & -2 \\
-1 & 2 & 1 \\
2 & 2 & 2
\end{array}\right]
$$

3×3 Exercise Set I (identical roots)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{lll}
-1 & 3 & 1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

[2] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rrr}
2 & -2 & -2 \\
2 & 2 & -2 \\
-1 & -1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

[3] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & -2 & -2 \\
2 & 1 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

[4] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & 1 \\
-1 & 2 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

[5] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rrr}
-2 & -1 & 1 \\
2 & 1 & -1 \\
2 & 3 & 1
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

[6] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rrr}
1 & 3 & 1 \\
-1 & 1 & 1 \\
2 & -2 & -2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

[7] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rrr}
-2 & 3 & 2 \\
-1 & 2 & -2 \\
-1 & 1 & 3
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

[8] Solve the differential equation $y^{\prime}=A y$ where

$$
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & -1 & 2 \\
-1 & -1 & 2
\end{array}\right], \quad y(0)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

3×3 Exercise Set J (symmetric matrices)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

[2] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
-3 & 1 & -1 \\
1 & -2 & 0 \\
-1 & 0 & -2
\end{array}\right]
$$

[3] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

[4] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
3 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

[5] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
-2 & 1 & 0 \\
1 & -3 & -1 \\
0 & -1 & -2
\end{array}\right]
$$

[6] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
-1 & 0 & -1 \\
0 & -1 & 1 \\
-1 & 1 & -2
\end{array}\right]
$$

[7] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
3 & 0 & -1 \\
0 & 3 & 1 \\
-1 & 1 & 2
\end{array}\right]
$$

[8] Find A^{n} where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 0 & 1 \\
0 & 2 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

3×3 Exercise Set K (symmetric matrices)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Find $e^{\mathcal{A t}}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
-3 & 1 & 0 \\
1 & -2 & -1 \\
0 & -1 & -3
\end{array}\right]
$$

[2] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & -2 & 0 \\
-1 & 0 & -2
\end{array}\right]
$$

[3] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
-2 & 1 & -1 \\
1 & -1 & 0 \\
-1 & 0 & -1
\end{array}\right]
$$

[4] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 1 & 3
\end{array}\right]
$$

[5] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

[6] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
-2 & 1 & -1 \\
1 & -3 & 0 \\
-1 & 0 & -3
\end{array}\right]
$$

[7] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

[8] Find $e^{A t}$ where A is the matrix

$$
A=\left[\begin{array}{rrr}
-2 & 0 & 1 \\
0 & -2 & 1 \\
1 & 1 & -3
\end{array}\right]
$$

3×3 Exercise Set L (quadratic forms)

Linear Algebra, Dave Bayer, November 24, 2013
[1] Express the quadratic form

$$
2 x^{2}+2 y^{2}+2 x z+2 y z+z^{2}
$$

as a sum of squares of othogonal linear forms.
[2] Express the quadratic form

$$
x^{2}-2 x y+2 y^{2}+2 y z+z^{2}
$$

as a sum of squares of othogonal linear forms.
[3] Express the quadratic form

$$
-3 x^{2}+2 x y-2 y^{2}-2 y z-3 z^{2}
$$

as a sum of squares of othogonal linear forms.
[4] Express the quadratic form

$$
-2 x^{2}-2 y^{2}-2 x z+2 y z-3 z^{2}
$$

as a sum of squares of othogonal linear forms.
[5] Express the quadratic form

$$
-x^{2}-y^{2}+2 x z-2 y z-2 z^{2}
$$

as a sum of squares of othogonal linear forms.
[6] Express the quadratic form

$$
2 x^{2}-2 x y+y^{2}+2 x z+z^{2}
$$

as a sum of squares of othogonal linear forms.
[7] Express the quadratic form

$$
2 x^{2}-2 x y+y^{2}+2 y z+2 z^{2}
$$

as a sum of squares of othogonal linear forms.
[8] Express the quadratic form

$$
-x^{2}+2 x y-2 y^{2}-2 y z-z^{2}
$$

as a sum of squares of othogonal linear forms.

