

Final Exam

Linear Algebra, Dave Bayer, December 16-22, 2021

Name: ______ Uni: _____

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.

[1] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^3 .

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} t$$

[2] Find the orthogonal projection of the vector (1,1,0,0) onto the subspace of \mathbb{R}^4 spanned by the vectors (1,1,1,1) and (0,1,1,1).

[3] Consider \mathbb{R}^3 equipped with the inner product

$$\langle (a,b,c),(d,e,f)\rangle \ = \ \left[\begin{array}{ccc} a & b & c \end{array} \right] \left[\begin{array}{ccc} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{array} \right] \left[\begin{array}{c} d \\ e \\ f \end{array} \right]$$

Find an orthogonal basis for \mathbb{R}^3 with respect to this inner product.

[4] Find A^n where A is the matrix

$$A = \begin{bmatrix} 1 & -3 \\ -1 & -1 \end{bmatrix}$$

[5] Solve the differential equation y' = Ay where

$$A = \begin{bmatrix} 0 & -3 \\ -1 & 2 \end{bmatrix}, \qquad y(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

[6] Solve the recurrence relation

$$f(0) = a$$
, $f(1) = b$, $f(n) = 7 f(n-1) - 6 f(n-2)$

[7] Express the quadratic form

$$x^2 + 2xy + 2y^2 - 2yz + z^2$$

as a sum of squares of orthogonal linear forms.

[8] Find e^{At} where A is the matrix

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$