Exam 2, 8:40am

Linear Algebra, Dave Bayer, November 4, 2021

Name:	An	3	Uni:				
	[1]	[2]	[3]	[4]	[5]	Total	
	6	6	6	6	6	30	

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.

[1] By least squares, find the equation of the form y = ax + b that best fits the data

$\int \chi_1$	y1]		$\left[-1\right]$	1
x_2	y ₂	=	0	1
x3	y ₃		- 2	0
L ~3	93 J		L ·2	3

[2] Find the orthogonal projection of the vector (1, 0, 0, 0) onto the subspace of \mathbb{R}^4 spanned by the vectors (1, 1, 1, 1) and (0, 1, 2, 1).

[3] Find the determinant of the matrix

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 3 & -1 & 0 & 0 & 0 \\ 0 & 1 & 4 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{vmatrix} 1-1 & 0 \\ 1 & 3-1 \\ 0 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 3-1 \\ 1 & 4 \end{vmatrix} + \begin{vmatrix} 1-1 \\ 0 & 4 \end{vmatrix} = \begin{vmatrix} 17 \\ 13 & + 4 \end{vmatrix}$$

$$\begin{vmatrix} 1-1 & 0 \\ 1 & 3-1 \\ 0 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 3-1 \\ 1 & 4 \end{vmatrix} - \begin{vmatrix} -10 \\ 14 \\ 14 \end{vmatrix} = 17$$

$$\begin{vmatrix} 1-1 \\ 0 \\ 14 \end{vmatrix} = \begin{vmatrix} 1-1 \\ 13 & + 4 \end{vmatrix}$$

$$\begin{vmatrix} 1-1 \\ 0 \\ 14 \end{vmatrix} = \begin{vmatrix} 1-1 \\ 0 \\ 14 \end{vmatrix} = 17$$

$$\begin{vmatrix} 1-1 \\ 0 \\ 13 & + 4 \end{vmatrix}$$

[4] Find the inverse of the matrix

$$A = \begin{bmatrix} 2 & 1 & 5 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \qquad \begin{bmatrix} 3 & 3 & -9 \\ 1 & -1 & -2 \\ -2 & -1 & 4 \end{bmatrix}$$

$$2 & 0 & 1 & 2 & 0$$

$$1 & 2 & 1 & 1 & 2$$

$$5 & 1 & 2 & 5 & 1$$

$$2 & 0 & 1 & 2 & 0$$

$$1 & 2 & 1 & 1 & 2$$

$$1 & 2 & 1 & 1 & 2$$

$$1 & 2 & 1 & 1 & 2$$

$$1 & 2 & 1 & 1 & 2$$

$$A^{-1} = \begin{pmatrix} -3 - 3 & 9 \\ -1 & 1 & 2 \\ 2 & 1 & -4 \end{bmatrix}_{/3}$$

check:
$$\begin{bmatrix} -3 - 3 & 9 \\ -1 & 1 & 2 \\ 2 & 1 - 4 \end{bmatrix} \begin{pmatrix} z & 1 & 5 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

F a

[5] Consider \mathbb{R}^3 equipped with the inner product

-

$$\langle (a, b, c), (d, e, f) \rangle = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix}$$

Find an orthogonal basis for \mathbb{R}^3 with respect to this inner product.

$$V_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \circ 0 \\ 0 \\ 1 & 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 4 \\ 2 \end{bmatrix} = 0 \implies V_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \circ 0 \\ 0 \\ 1 & 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = 0 \implies V_{3} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$

Meck:

$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$