F17 10:10 Exam 1 Problem 1

[Reserved for Score]

Test	42
------	----

Name	Uni	

[1] Find the general solution to the following system of equations.

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} v \\ w \\ x \\ y \\ z \end{bmatrix} =$$

F16 10:10 Exam 1 Problem 1

Linear Algebra, Dave Bayer

[Reserved for Score]

Test 91

NT	TT	
Name	Uni	
	-	

[1] Find the general solution to the following system of equations.

$$\begin{bmatrix} 5 & 7 & 1 & 2 \\ 3 & 4 & 1 & 1 \\ 2 & 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} =$$

F14 11:40 Exam 1 Problem 2 Linear Algebra, Dave Bayer

Exam 08

exam08b1p2

[2] Using matrix multiplication, count the number of paths of length eight from x to z.

F15 Exam 1 Problem 2 Linear Algebra, Dave Bayer

Test 30

[2] Using matrix multiplication, count the number of paths of length ten from x to z.

number of paths =

F17 8:40 Exam 1 Problem 4 Linear Algebra, Dave Bayer

Test 36

[4] Find the 2 \times 2 matrix A that reflects across the line 2y = 3x.

F17 10:10 Exam 1 Problem 4 Linear Algebra, Dave Bayer

Test 42

[4] Find the 2 \times 2 matrix A that reflects across the line 4y = x.

F15 Exam 1 Problem 3 Linear Algebra, Dave Bayer

Test 30

[3] Express A as a product of four elementary matrices, where

$$A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$
$$A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

F14 8:40 Exam 1 Problem 4

Linear Algebra, Dave Bayer

exam03a1p4

Exam 03

[4] Find the matrix A such that

	[1	1	0		[1	2	1]
А	0	1	1	=	1	1	1
	0	0	1		1	2	2

F17 10:10 Exam 1 Problem 3 Linear Algebra, Dave Bayer

Test 42

[3] Find the intersection of the following two affine subspaces of \mathbb{R}^3 .

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q \\ r \end{bmatrix}, \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} =$$

F14 11:40 Exam 1 Problem 5

Linear Algebra, Dave Bayer

Exam 08

exam08b1p5

[5] Find the intersection of the following two affine subspaces of $\mathbb{R}^4.$

$$\begin{bmatrix} 1 & 1 & 1 & -2 \\ 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$
$$\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix}$$