## Test 42

Name $\qquad$ Uni $\qquad$
[1] Find the general solution to the following system of equations.

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 \\
1 & 2 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
v \\
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{c}
v \\
w \\
x \\
y \\
z
\end{array}\right]=
$$

## Test 91

Name $\qquad$ Uni $\qquad$
[1] Find the general solution to the following system of equations.

$$
\left[\begin{array}{llll}
5 & 7 & 1 & 2 \\
3 & 4 & 1 & 1 \\
2 & 3 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=
$$

Exam 08
[2] Using matrix multiplication, count the number of paths of length eight from $x$ to $z$.


## Test 30

[2] Using matrix multiplication, count the number of paths of length ten from $x$ to $z$.


## Test 36

[4] Find the $2 \times 2$ matrix $A$ that reflects across the line $2 y=3 x$.


## Test 42

[4] Find the $2 \times 2$ matrix $A$ that reflects across the line $4 y=x$.


## Test 30

[3] Express $A$ as a product of four elementary matrices, where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]
$$



## Exam 03

[4] Find the matrix $A$ such that

$$
A\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

[3] Find the intersection of the following two affine subspaces of $\mathbb{R}^{3}$.

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
q \\
r
\end{array}\right], \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=
$$

Exam 08
[5] Find the intersection of the following two affine subspaces of $\mathbb{R}^{4}$.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 1 & 1 & -2 \\
1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
4
\end{array}\right]} \\
& {\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
r \\
\mathrm{~s}
\end{array}\right]}
\end{aligned}
$$

