Linear Algebra, Dave Bayer

Test 1

Name	_ Uni	

[1] Find the intersection of the following two affine subspaces of \mathbb{R}^3 .

	۲ ا		$\begin{bmatrix} 1 \end{bmatrix}$		$\left[egin{array}{c} 1 \\ -1 \\ 0 \end{array} ight]$	
រ្	J	=	1	+	-1	S
L 2	z _		1			

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} t$$

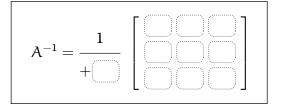
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} =$$

Linear Algebra, Dave Bayer

Test 1

[2] Find the inverse to the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$



Linear Algebra, Dave Bayer

Test 1

[3] Find A^n where A is the matrix

$$A = \begin{bmatrix} -2 & 2 \\ -2 & 3 \end{bmatrix}$$
$$A^{n} = \frac{2}{2} \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix} + \frac{2}{2} \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}$$

Linear Algebra, Dave Bayer

test1b3p4

Test 1

[4] Find A^n where A is the matrix

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 5 \end{bmatrix}$$
$$A^{n} = \bigoplus_{n \to \infty} \begin{bmatrix} n \\ n \\ n \end{bmatrix} + \bigoplus_{n \to \infty} \begin{bmatrix} n \\ n \\ n \end{bmatrix}$$

Linear Algebra, Dave Bayer

Test 1

[5] Find A^n where A is the matrix

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$$
$$A^{n} = \bigoplus_{i=1}^{n} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + \bigoplus_{i=1}^{n} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + \bigoplus_{i=1}^{n} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Linear Algebra, Dave Bayer

_

Test 1

[6] Find e^{At} where A is the matrix

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
$$e^{At} = \bigoplus_{i=1}^{n} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + \bigoplus_{i=1}^{n} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + \bigoplus_{i=1}^{n} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Linear Algebra, Dave Bayer

Test 1

[7] Solve the differential equation y' = Ay where

$$A = \begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 2 \\ 1 & -2 & -1 \end{bmatrix}, \quad y(0) = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
$$y = \bigoplus_{i=1}^{n} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \bigoplus_{i=1}^{n} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \bigoplus_{i=1}^{n} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

Linear Algebra, Dave Bayer

Test 1

[8] Express the quadratic form

 $x^2 - 2xy + 2y^2 + 2xz + 2z^2$

as a sum of squares of orthogonal linear forms.

