F16 10:10 Exam 1 Problem 1

Linear Algebra, Dave Bayer



Test 1

|      | <b></b> |  |
|------|---------|--|
| Name | lini    |  |
|      | 0111    |  |
|      |         |  |
|      |         |  |

[1] Find the general solution to the following system of equations.

$$\begin{bmatrix} 5 & 7 & 1 & 2 \\ 3 & 4 & 1 & 1 \\ 2 & 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} =$$

**F16 10:10 Exam 1 Problem 2** Linear Algebra, Dave Bayer



Test 1

[2] Using matrix multiplication, count the number of paths of length 16 from x to x.



number of paths =

**F16 10:10 Exam 1 Problem 3** Linear Algebra, Dave Bayer



Test 1

[3] Find the intersection of the following two affine subspaces of  $\mathbb{R}^3$ .

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix}, \qquad 2x + y - z = 2$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} =$$

F16 10:10 Exam 1 Problem 4

Linear Algebra, Dave Bayer



Test 1

[4] By least squares, find the equation of the form  $y = ax^2 + b$  that best fits the data

$$\begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$$

(Note that x is *squared* in  $y = ax^2 + b$ .)

y =  $x^2 +$ 

**F16 10:10 Exam 1 Problem 5** Linear Algebra, Dave Bayer



Test 1

[5] Let V be the vector space  $\mathbb{R}^3$ , equipped with the inner product

$$\langle (a,b,c), (d,e,f) \rangle \ = \ \left[ \begin{array}{ccc} a & b & c \end{array} \right] \left[ \begin{array}{ccc} 1 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 1 \end{array} \right] \left[ \begin{array}{c} d \\ e \\ f \end{array} \right]$$

Using this inner product to define orthogonality, find an orthogonal basis for the plane defined by the equation

x + y = 0

Extend this basis to an orthogonal basis for  $\mathbb{R}^3$ .

| $ u_1 =$ |  |  |
|----------|--|--|
| $ u_2 =$ |  |  |
| $v_3 =$  |  |  |