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Name Uni

[1] Find the general solution to the following system of equations.

 5 7 1 2
3 4 1 1
2 3 0 1
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[2] Using matrix multiplication, count the number of paths of length 16 from x to x.

number of paths =
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[3] Find the intersection of the following two a�ne subspaces of R3. x
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0
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0 1
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, 2x+ y− z = 2
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[4] By least squares, �nd the equation of the form y = ax2 + b that best �ts the data x1 y1
x2 y2
x3 y3

 =

 −1 1
0 1
1 2


(Note that x is squared in y = ax2 + b.)

y = x2 +
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[5] Let V be the vector space R3, equipped with the inner product

〈(a,b, c), (d, e, f)〉 =
[
a b c

]  1 −1 0
−1 3 −1
0 −1 1

 d

e

f


Using this inner product to de�ne orthogonality, �nd an orthogonal basis for the plane de�ned by the
equation

x+ y = 0

Extend this basis to an orthogonal basis for R3.

v1 =
[ ]

v2 =
[ ]

v3 =
[ ]


