[1] Find the determinant of the matrix

$$A = \begin{bmatrix} 3 & 3 & 3 & 3 \\ 1 & 4 & 1 & 1 \\ 1 & 2 & 1 & 4 \\ 2 & 2 & 4 & 2 \end{bmatrix}$$

[2] Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix}$$

[3] Using Cramer's rule, solve for y in the system of equations

a	1	2]	[x]		[1]
b	1	3	y	=	1
c	1	1	$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$		$\begin{bmatrix} 1\\1\\2 \end{bmatrix}$

[4] Find the characteristic equation and a system of eigenvalues and eigenvectors for the matrix

$$A = \begin{bmatrix} 2 & -2 \\ -3 & 1 \end{bmatrix}$$

[5] Let f(n) be the determinant of the $n \times n$ matrix in the sequence

$$\begin{bmatrix} -2 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} \begin{bmatrix}$$

Find f(0) and f(1). Find a recurrence relation for f(n). Express f(n) using a matrix power. Find f(8).