Exam 3
Linear Algebra, Dave Bayer, November 19, 2013

Name: \qquad Uni: \qquad

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	Total

If you need more than one page for a problem, clearly indicate on each page where to look next for your work.
[1] Find the determinant of the matrix

$$
\begin{aligned}
& {\left[\begin{array}{llll}
2 & 3 & 1 & 1 \\
1 & 4 & 1 & 1 \\
2 & 3 & 3 & 2 \\
1 & 4 & 2 & 3
\end{array}\right]} \\
& \left.\left|\begin{array}{llll}
2 & 3 & 1 & 1 \\
1 & 4 & 1 & 1 \\
2 & 3 & 3 & 2 \\
1 & 4 & 2 & 3
\end{array}\right| \underset{(4) \in(3)}{\Longrightarrow(4)}\left|\begin{array}{llll}
\Longrightarrow
\end{array}\right| \begin{array}{llll}
2 & 3 & 1 & 1 \\
1 & 4 & 1 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\left|=\left|\begin{array}{lll}
2 & 3 \\
1 & 4
\end{array}\right| \cdot\right| \begin{array}{ll}
2 & 1 \\
1 & 2
\end{array} \right\rvert\,=5 \cdot 3
\end{aligned}
$$

block triangular
check: expand row 1

$$
\begin{aligned}
& +2\left|\begin{array}{lll}
4 & 1 & 1 \\
3 & 3 & 2 \\
4 & 2 & 3
\end{array}\right|-3\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
1 & 2 & 3
\end{array}\right|+1\left|\begin{array}{lll}
1 & 4 & 1 \\
2 & 3 & 2 \\
1 & 4 & 3
\end{array}\right|-1\left|\begin{array}{lll}
1 & 4 & 1 \\
2 & 3 & 3 \\
1 & 4 & 2
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \Downarrow(2)+(2)-2(1) \\
& \text { (3) }-(3)-(1) \\
& \left.\begin{array}{cc}
14 & 1 \\
0-5 & 1 \\
0 & 2 \\
-5
\end{array} \right\rvert\, \\
& 2(13)-3(2)+1(-10)-1(-5)=26-6-10+5=15
\end{aligned}
$$

[2] Find the determinant of the matrix

$$
\left.f(4)=\left|\begin{array}{llll}
2 & 3 & 0 & 0 \\
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2
\end{array}\right|=2 \underbrace{\left|\begin{array}{lll}
2 & 3 & 0 \\
1 & 2 & 3 \\
0 & 1
\end{array}\right|}_{f(3)}-3\left|\begin{array}{lll}
1 & 3 \\
0 & 2 & 2 \\
0 & 1 & 2
\end{array}\right| \right\rvert\, \underbrace{}_{f(2)}=2 f(3)-3 f(2)
$$

$$
\begin{aligned}
& 2(1)-3(2)=-4 \\
& 2(-4)-3(1)=-11 \\
& 2(-11)-3(-4)=-10 \\
& 2(-10)-3(-11)=13 \\
& 2(13)-3(-10)=56
\end{aligned}
$$

check:

$$
\begin{aligned}
1 & =2 \cdot 2-3 \cdot 1 \quad \varnothing \\
-4 & =2 \cdot 1-3 \cdot 2 \quad \varnothing
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
f(3) \\
f(2)
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
f(2) \\
f(1)
\end{array}\right] \quad\left[\begin{array}{cc}
2 & -3 \\
1 & 0
\end{array}\right]^{2}=\left[\begin{array}{cc}
1 & -6 \\
2 & -3
\end{array}\right]} \\
& \text { i. }\left[\begin{array}{l}
f(7) \\
f(6)
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 \\
1 & 0
\end{array}\right]^{5}\left[\begin{array}{l}
f(2) \\
f(1)
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 & -3 \\
1 & 0
\end{array}\right]^{4}=\left[\begin{array}{cc}
1 & -6 \\
2 & -3
\end{array}\right]^{2}=\left[\begin{array}{cc}
-11 & 12 \\
-4 & -3
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2 & -3 \\
1 & 0
\end{array}\right]^{5}=\left[\begin{array}{cc}
2 & -3 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-11 & 12 \\
-4 & -3
\end{array}\right]=\left[\begin{array}{cc}
-10 & 33 \\
\text { I/r/rrn }
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-10 & 33 \\
/ / / / / r
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
56 \\
/ / 1
\end{array}\right] \sigma}
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=2 \\
& f(2)=\left|\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right|=1 \\
& f(3)=\left|\begin{array}{lll}
2 & 3 & 0 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right|=2\left|\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right|-3\left|\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right|=-4 \\
& f(n)=2 f(n-1)-3 f(n-2) \\
& \begin{array}{c|ccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline F(n) & 1 & 2 & 1 & -4 & -11 & -10 & 13 & 56 &
\end{array}
\end{aligned}
$$

[3] Find x / y where

$$
\left[\begin{array}{llll}
a & b & c & d \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

$$
x / y=\frac{\left|\begin{array}{llll}
a & a & c & d \\
0 & b & 1 & 1 \\
0 & c \\
c & 1 & 1 \\
d & 0 & 1
\end{array}\right| / D}{\left|\begin{array}{lll}
a & b & a \\
d
\end{array}\right|} \begin{array}{lll}
0 & 1 & b \\
1 \\
0 & 0 & c \\
0 & c & 1 \\
c & 1 \\
d & 1 & 1 \\
d & 0 & 1
\end{array}|/ D \quad a|\left|\begin{array}{lll}
1 & b & 1 \\
0 & c & 1 \\
0 & d & 1
\end{array}\right|=a\left|\begin{array}{ll}
b & 1 \\
c & 1 \\
d & 1
\end{array}\right|=a(b-c)=a(c-d)
$$

$$
x / y=\frac{b-c}{c-d}
$$

check: try $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 1\end{array}\right] \Rightarrow x / 4=\frac{b-c}{c-d}=\frac{3-2}{2-1}=1$

$$
\begin{gathered}
{\left[\begin{array}{llll|l}
1 & 3 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{llll|l}
1 & 2 & 1 & 0 & -2 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]} \\
\text { subtract each } \\
\text { row from pres }
\end{gathered}
$$

[4] Find the inverse of the matrix

$$
\begin{gathered}
{\left[\begin{array}{llll}
2 & 1 & 3 \\
1 & 2 & 0 \\
1 & 3 & 0
\end{array}\right]} \\
2 \begin{array}{lllll}
1 & 1 & 2 & 1 \\
1 & 2 & 3 & 1 & 1 \\
3 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 2 & 3 & 1 & 1 \\
\hline
\end{array}\left[\begin{array}{ccc}
0 & 9 & -6 \\
0 & -3 & 3 \\
1 & -5 & 3
\end{array}\right] / 3
\end{gathered} \quad \text { check } A \cdot A^{-1}=I \mathbb{O}
$$

check: $[A \mid I] \Rightarrow\left[I \mid A^{-1}\right]$

$$
\begin{aligned}
& \left.\left.\left.\left[\begin{array}{ccc|ccc}
2 & 1 & 3 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
1 & 3 & 0 & 0 & 0 & 1
\end{array}\right]\right)\right)\left(\begin{array}{ccc|ccc}
(1) \leftarrow(1)-2(2) \\
0 & -3 & 3 & 1 & -2 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & -1 & 1
\end{array}\right]\right)\left(\begin{array}{ll}
(1) \leftarrow(1)+3) \\
(2) \in(2)-2(3) \\
1 & 0
\end{array} 2\right.
\end{aligned}
$$

$$
\left[\begin{array}{ccc|ccc}
0 & 0 & 3 & 1 & -5 & 3 \\
1 & 0 & 0 & 0 & 3 & -2 \\
0 & 1 & 0 & 0 & -1 & 1
\end{array}\right] \text { (2) first row to bottom }
$$

$$
\left.\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 3 & -2 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 3 & 1 & -5 & 3
\end{array}\right]\right) \downarrow(3) \in(3) / 3
$$

$\left[\begin{array}{ll|lll}1 & & \mid c c c \\ 0 & 9 & -6 \\ 0 & -3 & 3 \\ & 1 & 1 & 1 & 1\end{array}\right] \begin{aligned} & \text { mut other vows by } 3 \\ & \\ & \\ & \end{aligned}$

$$
A^{-1}=\left[\begin{array}{ccc}
0 & 9 & -6 \\
0 & -3 & 3 \\
1 & -5 & 3
\end{array}\right] / 3
$$

[5] Find A^{n} where A is the matrix

$$
\left[\begin{array}{rr}
2 & -1 \\
-4 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { sum }=2+(-1)=1 \\
& \text { prod }=2(-1)-(-1)(-4)=-6 \Rightarrow \lambda=-2,3 \\
& \lambda=-2 \quad A+2 I: \overbrace{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
{\left[\begin{array}{rr}
4 & -1 \\
-4 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
1 \\
4
\end{array}\right]}^{0}\left[\begin{array}{l}
1 \\
4
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right] / 5=\left[\begin{array}{ll}
1 & 1 \\
4 & 4
\end{array}\right] / 5 \\
& \lambda=3 \quad A-3 I: \overbrace{0}^{2}-1 \begin{array}{cc}
{\left[\begin{array}{cc}
-1 & -1 \\
-4 & -4
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}
\end{array}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\left[\begin{array}{ll}
4 & -1
\end{array}\right] / 5=\left[\begin{array}{cc}
4 & -1 \\
-4 & 1
\end{array}\right] / 5 \\
& A^{n}=(-2)^{n}\left[\begin{array}{ll}
1 & 1 \\
4 & 4
\end{array}\right] / 5+3^{n}\left[\begin{array}{cc}
4 & -1 \\
-4 & 1
\end{array}\right] / 5
\end{aligned}
$$

check $\left[\begin{array}{ll}1 & 1 \\ 4 & 4\end{array}\right] / 5+\left[\begin{array}{cc}4 & -1 \\ -4 & 1\end{array}\right] / 5=\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right] / 5=$ I σ

$$
-2\left[\begin{array}{ll}
1 & 1 \\
4 & 4
\end{array}\right] / 5+3\left[\begin{array}{cc}
4 & -1 \\
-4 & 1
\end{array}\right] / 5=\left[\begin{array}{cc}
10 & -5 \\
-20 & -5
\end{array}\right] / 5=A \oplus
$$

