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If you need more that one page for a problem, clearly indicate on each page where to look next for

your work.

[1] Find a basis for the subspace V of R* spanned by the vectors

(2,0,1,0), (2,0,0,1), (0,2,1,0), (0,2,0,1)

Extend this basis to a basis for R*.
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[2] By least squares, find the equation of the form y = ax + b which best fits the data

(x1,y1) = (=1,0),  (x2,y2) =(0,0), (x3,y3) = (1,0), (xa,ys) =(2,1)
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[3] Let L be the linear transformation from R* to R® which projects orthogonally onto the subspace V
spanned by (1,—1,0) and (0, 2, 1). Find the matrix A which represents L in standard coordinates.
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[3] Let L be the linear transformation from R* to R® which projects orthogonally onto the subspace V
spanned by (1,—1,0) and (0, 2, 1). Find the matrix A which represents L in standard coordinates.

(1,-,0) = O,1,0)
(0,2)\) 1~1.0) _
(0,2,) = (0,21 - d,f%)%,jﬁy(" 1,0)

= (0,%)) —(-_71-)(1!—},0)
o (h‘r‘) L t C!,'l,O)

Pf;d\_h ();‘\103'.’ G .
42079 a0y = (41 0% r} . [_‘ T H }
((\?-I,@'(l;\p)(l' i©) [5] e 558112
P(aaaalb (l’\l\ﬁ: X ] V| X
(x,2-00.0 1,1 = Y‘]D | l%\ﬂlz &‘ \ ‘JH
AR REARY: \ 2 1 i}

o)L Do)

(\,-\IO)_L (l,l,\) o) ()(aaeéﬂ()\/b QCM ’fb%\\rﬁmg

JEW s | v 2-20 1.2 %
[.E| 1\01 +{l 1| = ‘:’%%O o€ |2 2
000/2 \\l/3 000/6 '12’2,/6-

c-l 2
=\-1 5z
2

. & /6




Exam 2, October 22, 2013

[3] Let L be the linear transformation from R* to R® which projects orthogonally onto the subspace V
spanned by (1,—1,0) and (0, 2, 1). Find the matrix A which represents L in standard coordinates.
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[4] Let V be the vector space of all polynomials of degree < 2 in the variable x with coefficients in R. Let

W be the subspace of polynomials satisfying f(2) = 0. Find an orthogonal basis for W with respect to the
inner product

1
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[4] Let V be the vector space of all polynomials of degree < 2 in the variable x with coefficients in R. Let
W be the subspace of polynomials satisfying f(2) = 0. Find an orthogonal basis for W with respect to the
inner product

1
(f,g) = L fx)glx) dx

X-2, (ax+b) (x-2)
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a(f-%5+%) + b(f-%+4) =0

42 a(3—-16+24) + b (4-21+43)=0
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[5] Find an orthogonal basis for the subspace of R* defined by the equation w + x — 2y — 2z = 0. Extend

this basis to a orthogonal basis for R*.
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