Exam 2

Linear Algebra, Dave Bayer, October 22, 2013

Name:						Uni:		
	[1]	[2]	[3]	[4]	[5]	Total		

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.

[1] Find a basis for the subspace V of \mathbb{R}^4 spanned by the vectors

(2,0,1,0), (2,0,0,1), (0,2,1,0), (0,2,0,1)

Extend this basis to a basis for \mathbb{R}^4 .

[2] By least squares, find the equation of the form y = ax + b which best fits the data

$$(x_1, y_1) = (-1, 0), (x_2, y_2) = (0, 0), (x_3, y_3) = (1, 0), (x_4, y_4) = (2, 1)$$

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 which projects orthogonally onto the subspace V spanned by (1, -1, 0) and (0, 2, 1). Find the matrix A which represents L in standard coordinates.

[4] Let V be the vector space of all polynomials of degree ≤ 2 in the variable x with coefficients in \mathbb{R} . Let W be the subspace of polynomials satisfying f(2) = 0. Find an orthogonal basis for W with respect to the inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_0^1 \mathbf{f}(\mathbf{x}) \mathbf{g}(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

[5] Find an orthogonal basis for the subspace of \mathbb{R}^4 defined by the equation w + x - 2y - 2z = 0. Extend this basis to a orthogonal basis for \mathbb{R}^4 .