Exam 1
Linear Algebra, Dave Bayer, September 24, 2013

Name: \qquad Uni: \qquad

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] Using matrix multiplication, count the number of paths of length ten from w to itself.

$$
A^{10}=\left[\begin{array}{lll}
{[88} \\
= & 1
\end{array}\right]
$$

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad A^{4}=\left[\begin{array}{lll}
3 & 1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad A^{5}=\left[\begin{array}{lll}
4 & 2 & 3 \\
3 & \text { W//// } \\
2 & \text { Not needed }
\end{array}\right. \\
& 28=\begin{array}{l}
4.4+2 \cdot 3+3 \cdot 2 \\
16+6+6
\end{array} \quad 28 \text { paths }
\end{aligned}
$$

check: 0,1,2 or 3 wxz loops, rest w loops in buckets between $\omega \times 2$ loops

286
example 310 $\underbrace{\omega \omega}_{3} \underbrace{\omega \times Z}_{1} \omega \underbrace{\omega \times 2}_{0} \omega$ before between after
bucket bucket bucket
[2] Solve the following system of equations.

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
2 & 0 & 0 & 3 \\
1 & 1 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]
$$

particular solution: $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right] \quad\left[\begin{array}{l}w \\ x \\ 4 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$
homogeneous solutions: 3 conditions on 4 vanables leaves 1 dimension solution space

$$
\left[\begin{array}{llll}
2 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
彡 \\
-2
\end{array}\right]=0 \quad\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
3 \\
\vdots \\
-1 \\
-2
\end{array}\right]=0 \quad\left[\begin{array}{llll}
1 & 1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
1 \\
-2
\end{array}\right]=0
$$

general solution: $\left[\begin{array}{l}w \\ x \\ y \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{c}3 \\ 1 \\ -1 \\ -2\end{array}\right] t$
check:

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
2 & 0 & 0 & 3 \\
1 & 1 & 2 & 1
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
3 \\
1 \\
1 \\
-2
\end{array}\right] t\right)=\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] t=\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right] \theta
$$

[3] Express A as a product of elementary matrices, where

$$
A=\left[\begin{array}{ll}
6 & 3 \\
1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
6 & 3 \\
1 & 0
\end{array}\right]_{\mathbb{E}} \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
6 & 3
\end{array}\right] \underset{\sim}{\approx}\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \underset{\sim}{\approx}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& \text { (1) (2) (2) } 2+60 \text { (3) } 3(2) \\
& A=\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \\
6 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\right) I \\
& A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
6 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \\
& \text { check } \underbrace{\left[\begin{array}{ll}
6 & 3 \\
10
\end{array}\right]_{O}}_{\left[\begin{array}{ll}
6 & 1 \\
10
\end{array}\right]}
\end{aligned}
$$

[4] Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+s\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

$$
\left.\frac{1\left\{\cdot\left[\begin{array}{llll}
2 & 3 & 4 & 5
\end{array}\right]\left[\begin{array}{ccc}
3 & 4 & 5 \\
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]\right.}{1+3=4} \begin{array}{c}
3 \\
0
\end{array}\right]=0
$$

system of equations:

$$
\left[\begin{array}{cccc}
3 & -2 & 0 & 0 \\
4 & 0 & -2 & 0 \\
5 & 0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

check:

$$
\left[\begin{array}{cccc}
3 & -2 & 0 & 0 \\
4 & 0 & -2 & 0 \\
5 & 0 & 0 & -2
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right] s\right)=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] s=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \sigma
$$

[5] Find the intersection of the following two affine subspaces of \mathbb{R}^{4}.

$$
\begin{aligned}
& {\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]} \\
& {\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]}
\end{aligned}
$$

set equal,

$$
\begin{gathered}
{\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
2 & 0 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
2
\end{array}\right] \quad 3 \text { conditions, rows (1), (3) same }} \\
{\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
3 \\
1 \\
2
\end{array}\right] t} \\
\Rightarrow\left[\begin{array}{l}
w \\
x \\
4 \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right](\underbrace{\left[\begin{array}{l}
2 \\
2 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
2 \\
1 \\
3
\end{array}\right] t=\left[\begin{array}{l}
w \\
x \\
4 \\
2
\end{array}\right]}_{\left.\left[\begin{array}{l}
a \\
b
\end{array}\right]+\left[\begin{array}{l}
1 \\
3
\end{array}\right] t\right)}
\end{gathered}
$$

check:

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]+\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & c \\
3 & 0
\end{array}\right] \frac{\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right] t\right.}{\left[\begin{array}{l}
c \\
d
\end{array}\right]}=\left[\begin{array}{l}
2 \\
2 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
2 \\
1 \\
3
\end{array}\right] t o
$$

$\binom{t$ parametrizes same points in }{ both spaces, in lockstep }

