

Name: _

[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	[5] (5 pts)	[6] (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.

Do not use calculators or decimal notation.

[1] Use Cramer's rule to solve for x in the system of equations

a	1	1]	[x]		[1]	
1	2	3	y z	=	1	
1	3	6	$\lfloor z \rfloor$		1	

[2] Find a basis for the subspace V of \mathbb{R}^5 defined by the following system of equations. Extend this basis to a basis for all of \mathbb{R}^5 .

$$\begin{bmatrix} 1 & 0 & 0 & 2 & 5 \\ 0 & 1 & 0 & 3 & 6 \\ 0 & 1 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 & 7 \end{bmatrix} \begin{bmatrix} v \\ w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

[3] Find A^n for the matrix

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$$

[4] Find e^{At} for the matrix

$$A = \begin{bmatrix} 4 & -4 \\ 1 & 8 \end{bmatrix}$$

[5] Find e^{At} for the matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

[6] Find e^{At} for the matrix

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

[7]

[8]

[9]