Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

$$\left[\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 3 & 3 & 0 & 3 \\ 4 & 4 & 4 & 0 \end{array}\right]$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Exam:
$$\mathbf{XA}$$

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

$$\left[\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 3 & 3 & 0 & 3 \\ 4 & 4 & 4 & 0 \end{array}\right]$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:							
ID:	School:						
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .
Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Exam: \mathbf{XH}

Continued on page: _____

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Exam: $\mathbf{X}\mathbf{M}$

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .
[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:							
ID:	School:						
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .
Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:										
ID:	School:									
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL			

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Exam: \mathbf{XT}

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .
[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:							
ID:	School:						
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .
[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:							
ID:	School:						
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .
Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	D: School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:										
ID:	School:									
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL			

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .
[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:							
ID:	School:						
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .
Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 3 & 3 & 0 & 3 \\ 4 & 4 & 4 & 0 \end{bmatrix}$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .
[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:							
ID:	School:						
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .
Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .

[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name:											
ID:	School:										
[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL				

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Please do not use calculators or decimal notation.

[1] Compute the determinant of the following 4×4 matrix:

What can you say about the determinant of the $n \times n$ matrix with the same pattern?

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the set of all polynomials f in V which satisfy f(0) = f(1) = 0. Show that W is a subspace of V. Find a basis for W. Extend this basis to a basis for V.

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that L(v) = v for any vector v in the plane x + y - z = 0, and such that L(1, 1, 0) = (0, 0, 0). Find the matrix A that represents L in standard coordinates.

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 1), (x_2, y_2) = (2, 1), (x_3, y_3) = (3, -1).$

[5] Find
$$(s,t)$$
 so $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

[6] Find an orthogonal basis for the subspace w + x + y + z = 0 of \mathbb{R}^4 .
[7] Let A be the matrix

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .