
Connections and known cases
Avi Zeff

Last time, we stated the p-adic Langlands conjectures, in terms of the existence and
properties of a certain fully faithful functor A : IndDb

f.p.(sm. G) ↪→ Ind Coh(Xd), and made
a series of remarks giving further properties of it. Today’s talk could be viewed as a con-
tinuation of this series of remarks, but they will be somewhat more substantial ones: first,
we’ll see how this conjecture implies the geometric Breuil–Mézard conjecture. Then we’ll
look at some known cases and some recent progress: the GL1 case is reasonably simple,
but already the GL2(Qp) case, though (more or less) known, is complicated, and we’ll only
vaguely sketch the theory. For higher extensions of Qp, the theory is even more complicated;
we’ll mention a bit of how some of this goes, although the general theory is still unknown.
Finally, we’ll look at the right adjoint B of A, giving approximately the other direction of
the correspondence.

1. The geometric Breuil–Mézard conjecture

This conjecture stems from the following fact: let kF be the residue field of our p-adic field
F , and k = kE = O/π (we maintain the same notation as last time, so O = OE). Then
the irreducible k̄ = Fp-representations of GLd(kF ) have a simple classification: via highest
weight vectors they are in bijection with Serre weights, i.e. tuples m = (mσ̄,i) for σ̄ : kF ↪→ k̄
and 1 ≤ i ≤ d satisfying certain restrictions, unimportant for us. If m is a Serre weight, we
write Fm for the corresponding k̄-representation of GLd(kF ).

Recall that to a regular Hodge type λ and an inertial type τ we can associate repre-
sentations Vλ and σcrys,◦(τ) of K = GLd(OF ) over O. To the pair (λ, τ), it is then nat-
ural to associate their tensor product; because of the above observation, we’re interested
in k-representations, not O-representations, so we simply reduce modulo πE and call (the
semisimplification of) the resulting representation σcrys(λ, τ) = (Vλ ⊗O σcrys,◦(τ) ⊗O k)ss,
which is now a representation of GLd(kF ). Therefore we can write it as a direct sum of irre-
ducibles, which are classified by Serre weights. In other words, there exist integer ncrys

m (λ, τ)
such that

σcrys(λ, τ) =
⊕
m

F
⊕
ncrys

m (λ,τ)
m .

Now, we expect the data of λ and τ to pick out a component of Xd, namely X crys,λ,τ
d . In

particular if we take the underlying reduced stack (which now is entirely in characteristic p)
we get a cycle Zcrys,λ,τ on Xd,red, i.e. an element of the free abelian group on its irreducible
components. For purposes such as automorphy lifting, we would like to be able to geometrize
the above statement, i.e. interpret the Fm similarly as cycles on Xd,red to form the following.

Conjecture (Geometric Breuil–Mézard conjecture). There exist cycles Zm on Xd,red such
that for every regular Hodge type λ and inertial type τ we have

σcrys(λ, τ) =
∑
m

ncrys
m (λ, τ) · Zm.
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Now, assume our main conjecture from last time. We can take the representation Vλ⊗O
σcrys,◦(τ) of K = GLd(OF ) and take compact induction up to G = GLd(F ) to get a smooth
G-representation; applying A gives a derived ind-coherent sheaf Fλ,τ on Xd, which we saw
last time is actually a coherent sheaf concentrated in degree 0. Similarly from Fm, the action
of GLd(kF ) gives an action of GLd(OF ) and so we can similarly induce up to G and apply A
to get a complex Fm = A(c - IndGK Fm), which again turns out to be coherent concentrated
in degree 0 without too much more work, supported on the special fiber of Xd.

Now, by the definitions and the functoriality in A we have in K0(Coh(Xd)) the equality

[Fλ,τ ⊗O k] =
∑
m

ncrys
m (λ, τ) · [Fm].

Taking supports and using the maximality condition we skipped lightly over last time gives
cycles Zm as the support of Fm satisfying the hypotheses of the conjecture, so the geometric
Breuil–Mézard conjecture is a consequence of our p-adic Langlands conjecture.

2. GL1

We expect the local Langlands program for GL1 to be essentially local class field theory, and
indeed this will be true in this case. Here, we can even describe the image explicitly to get
an equivalence of derived categories, which comes from an equivalence of abelian categories
and so the statement will be true even without deriving.

By local class field theory, we have an isomorphism W ab
F

∼→ F× = GL1(F ), and one
can work out that in this case X1 is genuinely the stack of one-dimensional continuous
representations of WF , or equivalently of W ab

F
∼→ GL1(F ). In particular one can describe X1

explicitly as
SpfO[[F×]]/Ĝm

where Ĝm is the p-completed multiplicative group acting trivially on SpfO[[F×]]. Therefore
sheaves on X1 with trivial Ĝm-action are equivalent to O[[F×]]-modules. Recalling that the
latter are (a generalization of) an incarnation of smooth GL1(F )-representations, this gives
an explicit version of A, sending a smooth GL1(F )-representation to the corresponding sheaf
on X1.

Another way to formulate this is to look at the structure sheaf OX1 : via this description,
it naturally carries an O[[F×]]-action, so given another O[[F×]]-module π our functor is just
given by

π 7→ OX1 ⊗O[[F×]] π,

i.e. L∞ = OX1 .

3. GL2(Qp)

There is work in progress of Dotto, Emerton, and Gee to prove the conjecture for GL2(Qp), for
which a less categorical formulation of p-adic Langlands is already known (and is essentially
the only known case beyond GL1). The strategy is to explicitly construct L∞.
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In this case, X2 classifies rank 2 (ϕ,Γ)-modules, and in particular id : X2 → X2 gives a
universal rank 2 (ϕ,Γ)-module D over X2. For any morphism SpecA → X2, we write DA

for the pullback of D to A (twisted by the cyclotomic character for technical reasons). Then
(recall David’s talk) DA is a rank 2 projective module over

AA = A((T ))

with commuting A-linear semilinear actions of ϕ and Γ by ϕ(1+T ) = (1+T )p and γ(1+T ) =
(1 + T )ε(γ) for γ ∈ Γ = Gal(Qp(ζp∞)/Qp) and ε the cyclotomic character. The action of ϕ
is injective and so has a left inverse ψ, which one can work out is an A-linear surjection
commuting with the Γ-action and satisfying

ψ(ϕ(a)m) = aψ(m), ψ(aϕ(m)) = ψ(a)m

for all a ∈ AA and m ∈ DA.
Using the actions of ϕ, ψ, and Γ on DA, we will explicitly build a GL2(Qp)-representation.

Our first attempt will be a representation called D � P1; this will not be quite right, so we
build a subrepresentation which is the right thing for L∞.

To get D�P1, we’ll build D�Zp, viewing Zp as the affine line, and then glue two copies
along D � Z×p and z 7→ z−1. We start by giving an action of the monoid

P+ =
(
Zp \ {0} Zp

0 1

)
on DA by (

pma b
0 1

)
= (1 + T )bϕm ◦ a

for a ∈ Z×p , m ≥ 0, b ∈ Zp where we view a as an element of Γ via the standard isomorphism.
There is also a natural action of P+ on Zp by(

Zp \ {0} Zp
0 1

)
· z = pmaz + b,

and both actions extend to all of GL2(Zp) (they’re somewhat vague about this, but I guess
it’s via Bruhat decomposition or similar?) to get a representation DA�Zp of GL2(Zp). One
can check that the subrepresentation DA � Z×p is the locus on which ψ = 0. Gluing along
this locus and the map z 7→ z−1 allows us to extend to a GL2(Zp)-action on the resulting
representation DA � P1. This is functorial in A and so lifts to a representation D � P1.

However, this turns out not to be the right choice for L∞: it realizes not the local
Langlands correspondence but some extension by a dual. Therefore we want to pick out
some subrepresentation by choosing a lattice: set A+

A = A[[T ]], which again has actions of
ϕ, ψ, and Γ. Then viewing DA as an A+

A-module, it turns out to contain a minimal ψ-stable
A+
A-lattice D\

A (i.e. it is finitely generated over A+
A and spans DA over AA) compatibly

with flat base change. Taking the product with P1 as above turns out (very non-obviously,
using facts from the classical p-adic local Langlands correspondence for GL2(Qp)) to give a
GL2(Qp)-stable lattice D\

A � P1. Again this gives a universal lattice D\ � P1 on X2, which
turns out to be the right candidate for L∞.

It is also possible to describe the geometry of X2 fairly explicitly: in particular its reduced
closed points look like a chain of copies of P1. We will not get into this.
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4. GL2(Qpr)

We next consider the case where we replace Qp by an unramified extension Qpr , focusing on
the simplest case Qp2 . Already this is much more complicated. One example demonstrating
this is as follows. Recall that for a Serre weight m we got an irreducible representation
Fm of GL2(Fp2), and thus of K = GL2(Zp2). When we take compact induction up to
G = GL2(Qp2) and apply A, we get an explicit sheaf Fm. In the Qp case, we saw that this
sheaf was concentrated in degree 0; further, its support is a point, i.e. it is a skyscraper
sheaf at the corresponding L-parameter. This is the geometric incarnation of a particularly
nice case of the local Langlands program, just with p-adic coefficients.

In the Qp2 case, things are much more complicated: we still have Fm, but now the support
is one-dimensional, and so representation has infinite length. In particular, unlike the Qp

case or the case ` 6= p, we can’t think of a smooth G-representation as an actual sheaf; the
derived setup is very much necessary.

Nevertheless, under some restrictions on the G-representations there is a result in progress
(by many people, including Michael Harris) giving a functor which is expected to be the
restriction of A to suitably nice representations. This is again done by an explicit construction
which is too complicated for this talk.

5. The adjoint functor B

The last thing I want to talk about is the other direction of the correspondence. Since
A : IndDb

f.p.(sm. G) → Ind Coh(Xd) is a cocontinuous functor between suitably nice ∞-
categories, by the adjoint functor theorem it admits a right adjoint B : Ind Coh(Xd) →
IndDb

f.p.(sm. G). If we expect that our conjecture should have an upgrading to an equivalence
of categories, replacing IndDb

f.p.(sm. G) by some sort of derived category D(BunG) (suitably
decorated), with i : [∗/G(F )] ↪→ BunG giving the relevant stratum, then we expect that our
functor A should be the composition of this equivalence of categories with i! : D(sm. G) →
D(BunG), and B should be the composition of the inverse of the equivalence with i! :
D(BunG)→ D(sm. G).

We can try to understand this functor using what we know about A, and in particular
we hope to be able to use it to understand the reverse direction of the local Langlands
correspondence: given a suitable Galois representation GalF → GLd(O), we can assign it to
a skyscraper sheaf on Xd and would like to be able to say what representation of GLd(F )
this corresponds to.

Let L∞ be the sheaf corresponding to A by the conjecture. We have A(π) = L∞⊗L
O[[G]] π,

so we can give an equally explicit description of B: if F is a derived ind-coherent sheaf on
Xd, then

B(F) = RHomOXd
(L∞,F).

Recall the connection to Taylor–Wiles patching: we expect that if R∞ is the power series
ring in the Taylor–Wiles variables over the universal deformation ring of a point x ∈ Xd(Fp)
corresponding to ρ : GalF → GLd(Fp), then the universal lift corresponds to a morphism
f : Spf R∞ → Xd, and we expect that the patched module M∞ is given by f ∗L∞. Generically,
we expect that R∞ is formally smooth, and M∞ is pro-flat (even pro-free) over R∞. Thus
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we should be able to compute B as

B(F) = RHomOXd
(L∞,F)

= RΓ(RHomOX
(L∞,F))

= RΓ(Xd,HomOXd
(L∞,F)).

If x : SpecFp → Xd is a closed point corresponding to ρ semisimple and non-scalar and
Gx = AutGalF (ρ), then x gives rise to a closed embedding i : SpecFp/Gx ↪→ Xd, and we can
form the skyscraper sheaf δx = i∗OSpecFp

. If f : Spf R∞ → Xd is the versal morphism at x
coming from Taylor–Wiles patching, then

HomOXd
(L∞, δx) = Ri∗HomOSpec Fp/Gx

(i∗L∞,OSpecFp
),

which is just the m-torsion in M∨
∞ (as dual to M∞/m∞), i.e. M∨

∞[m]. Thus B(δx) =
M∨
∞[m]Gx .
We can now compute some examples. Take d = 2 and F = Qp, and suppose ρ = χ1⊕χ2

for χ1 6= χ2. Then Gx = Gm and M∨
∞[m] is the direct sum π1⊕π2 of two irreducible principal

series representations, with

HomOXd
(L∞, δx) = π1(1)⊕ π2(−1)

(in some order) with the twists denoting the weights of the Gm-action. Thus B(δx(1)) = π2
and B(δx(−1)) = π1.

If ρ is irreducible, then Gx = {±1} and M∨
∞[m] is an irreducible supersingular represen-

tation, with
HomOXd

(L∞, δx) = π(1)

with the twist denoting a nontrivial action of {±1}. Therefore B(δx(1)) = B(δx(−1)) = π.
One can also do similar examples for Qp2 .

More generally, we can think of the representation π associated to ρ (in suitably nice
contexts) as the unique irreducible representation π such that the support of H0(A(π))
contains the point x ∈ Xd corresponding to ρ. (For more general groups G, we would no
longer expect there to be a unique such representation.)
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