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Let X be a smooth proper curve over a finite field k = Fq, with structure map π : X →
Spec k. (We may as well assume k = Fp.) In this setting, the core of class field theory
can be thought of as an isomorphism Pic(X)∧ ' π1(X)ab (satisfying certain additional
properties). For ` 6= p, the `-adic portion of this story can by done via classical methods,
typically something like this: we identify the left-hand side modulo `n with the mod `n étale
cohomology of X (using a version of Tate duality), and the right-hand side mod `n with
Hom(π1(X),Z/`n) ' H1

ét(X,Z/`n). Since the étale cohomology of X is not well-behaved at
` = p, this story breaks down.

We aim to replace it using our new theory of syntomic cohomology, which should give a
good theory at p. In particular, we want to show that

Pic(X)/pn ' π1(X)ab/pn.

We will deduce this from the following duality result for syntomic cohomology, originally
proven by Milne.

Theorem 1. Let X be a smooth proper scheme over k of dimension d. Then for each integer
i there is a natural isomorphism

RΓsyn(X,Zp(i)) := RΓ(Xsyn,OXsyn{i}) ' RΓ(Xsyn,OXsyn{d− i})∨[−2d− 1]

=: RΓsyn(X,Zp(d− i))∨[−2d− 1].

We can view this either as Poincaré duality for syntomic cohomology or for Xsyn.
Before seeing how we can prove such a thing, let’s see how we can deduce the above

statement about class field theory. Our setting is that of the theorem with d = 1. In the case
i = 1, we said last time that Zp(1) identifies with TpGm; in particular RΓsyn(X,Zp(1))/pn '
RΓét(X,Gm)/pn ' RΓ(X,µpn). Therefore by Theorem 1 we have

RΓ(X,µpn) ' RΓ(X,Z/pn)∨[−3].

In particular in degree 2 (since the isomorphism is t-exact) we get

H2(X,µpn) ' H1(X,Z/pn)∨ =: Hom(π1(X),Z/pn) = π1(X)ab/pn.

On the other hand, from the Kummer sequence

H1(X,Gm)
pn−→ H1(X,Gm)→ H2(X,µpn)→ H2(X,Gm)

pn−→ H2(X,Gm)

we get a short exact sequence

0→ H1(X,Gm)/pn = Pic(X)/pn → H2(X,µpn)→ H2(X,Gm)[pn]→ 0.
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Thus if we can show that H2(X,Gm)[pn] = 0 then we get an isomorphism Pic(X)/pn '
H2(X,µpn), which the above identifies with π1(X)ab/pn.

It suffices to show this in the case n = 1, since any pn torsion necessarily implies p-
torsion (by multiplying by pn−1). We can show directly via the theory of torsors that
H2(X,Gm)[p] = 0; alternatively we can show it via Theorem 1. Taking Euler character-
istics of the isomorphism RΓ(X,µp) ' RΓ(X,Z/p)∨[−3] from above gives

dimH0(X,µp)− dimH1(X,µp) + dimH2(X,µp)− dimH3(X,µp) = −χ(X,Z/p).

By Artin–Schreier theory, we have χ(X,Z/p) + χ(X,Ga) = χ(X,Ga) and so χ(X,Z/p) = 0,
so this means that

dimH0(X,µp) + dimH2(X,µp) = dimH1(X,µp) + dimH3(X,µp).

We have H0(X,µp) = 0 and H3(X,µp) ' H0(X,Z/p)∨ ' Z/p, so this becomes

dimH2(X,µp) = dimH1(X,µp) + 1.

The Kummer sequence

H0(X,Gm) = 0→ H1(X,µp)→ H1(X,Gm)
p−→ H1(X,Gm)

shows that H1(X,µp) ' H1(X,Gm)[p] = Pic(X)[p], so we could write this as

dimH2(X,µp) = dim Pic(X)[p] + 1.

But from the short exact sequence above (coming from the H2 part of the Kummer sequence)
we have

dimH2(X,µp) = dim Pic(X)/p+ dimH2(X,Gm)[p],

so
dim Pic(X)[p] + 1 = dim Pic(X)/p+ dimH2(X,Gm)[p].

Since Pic(X) ' Pic0(X) × Z with Pic0(X) finite, for any (x, n) ∈ Pic0(X) × Z ' Pic(X)
if p · (x, n) = 0 then pn = 0 and so n = 0, so Pic(X)[p] = Pic0(X)[p]; on the other hand
Pic(X)/p ' Pic0(X)/p× Z/p ' Pic0(X)[p]× Z/p since Pic0(X) is finite. Therefore

dim Pic(X)/p = dim Pic(X)[p] + 1,

and so H2(X,Gm)[p] must vanish.
We’d next like to prove Theorem 1. The key observation is that although it is pretty

general in one respect (it applies to any smooth proper k-scheme X) it is specific in another
(it applies only to the sheaves Zp(i) on X, or equivalently OXsyn{i} on Xsyn), and so we
might hope that we can trade one level of generality for another: by allowing more general
sheaves, we hope to restrict to a particular k-scheme. Indeed, we don’t have to work too
much harder to generalize to other sheaves, as we’re already considering sheaves OXsyn{i}
beyond the structure sheaf OXsyn .

In particular, for any (derived) sheaf F on Xsyn, we can consider the (derived) push-
forward πsyn

∗ F on (Spec k)syn. Thus we might hope that Theorem 1 should follow from
a sufficiently strong version of Poincaré duality for (Spec k)syn, which in the following we
abbreviate as ∗syn.

Indeed, we have the following theorem.
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Theorem 2 (Serre duality on (SpecFp)syn).

(1) There is a natural isomorphism RΓ(∗syn,O∗syn) ' Zp ⊕ Zp[−1] in Perf(Zp).

(2) For any E ∈ Perf(∗syn), the pairing

RΓ(∗syn, E)⊗RΓ(∗syn, E∨)→ RΓ(∗syn,O∗syn)→ Zp[−1]

induced by E ⊗ E∨ ∼→ O∗syn and the isomorphism from (1) induces an isomorphism

RΓ(∗syn, E) ' RΓ(∗syn, E∨)∨[−1]

in Perf(Zp).

Letting E = Hsyn(X){i} := πsyn
∗ OXsyn{i} ∈ Perf(∗syn), this gives

RΓ(X,OXsyn{i}) = RΓ(∗syn,Hsyn(X){i}) ' RΓ(∗syn,Hsyn(X){i}∨)∨[−1].

To proceed further, we need a description of Hsyn(X){i}∨. This comes from the work of
Longke Tang on Poincaré duality for prismatic cohomology. In this case, since we’re in
characteristic p this is really a version of Poincaré duality for crystalline cohomology with
coefficients in a prismatic F-gauge, and can by summarized by the following theorem:

Theorem 3 (Poincaré duality for Hsyn(X)). Suppose X is smooth and proper over k of
dimension d.

(1) There is a natural isomorphism H 2d
syn(X){d} ' O∗syn.

(2) The pairing
Hsyn(X)⊗Hsyn(X)→Hsyn(X)→ O∗syn{−d}[−2d]

coming from (1) is perfect, giving an isomorphism

Hsyn(X)∨ 'Hsyn(X){d}[2d]

in Perf(∗syn).

Now we can complete the proof of Theorem 1: we get

RΓ(X,OXsyn{i}) ' RΓ(∗syn,Hsyn(X){d− i}[−2d− 1] = RΓ(Xsyn,OXsyn{d− i})∨[−2d− 1]

as claimed.
We won’t prove Theorem 3, as it’s essentially just about crystalline cohomology in this

setting and unfolding definitions (it also holds in mixed characteristic, where it is much more
interesting but also more difficult, but we avoid this for now). However it does remain to
prove Theorem 2; essentially what we’ve done is reduce Theorem 1 to a duality on ∗syn,
which we can understand reasonably explicitly.

The first statement of Theorem 2, the calculation of the cohomology of the structure
sheaf, is relatively straightforward: by definition, RΓ(∗syn,O∗syn) =: RΓsyn(SpecFp,Zp(0)),
and we observed last time that Zp(0) just corresponds to the constant sheaf Zp and so this is
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RΓ(SpecFp,Zp) = RΓ(Gal(Fp/Fp),Zp) = RΓ(Ẑ,Zp). As a complex, we can view RΓ(Ẑ,M)

as (M
γ−1−−→ M) for any Ẑ-module M , where γ is a topological generator; on M = Zp with

the trivial action, γ 7→ 1 and so is this the trivial complex Zp ⊕ Zp[−1].
The second statement is more subtle, and proceeds via several steps. The idea is this:

for any E ∈ Dqc(∗syn), via the first statement there is a map

RΓ(∗syn, E)⊗RΓ(∗syn, E∨[1])→ RΓ(∗syn,O∗syn [1]) ' Zp[1]⊕ Zp → Zp,

yielding by adjunction a map

ηE : RΓ(∗syn, E)→ RΓ(∗syn, E∨[1])∨.

We let C denote the full subcategory of Dqc(∗syn) spanned by E such that ηE is an isomor-
phism. The idea is that step by step, we will show that Perf(∗syn) ⊆ C.

Step 1. Observe that O∗syn is in C, since by the computation above the right-hand side is
(Zp[1] ⊕ Zp)∨ ' Zp ⊕ Zp[−1], agreeing with the left-hand side, and the map ηO is
self-dual and so self-inverse.

Step 2. For every i, the Breuil–Kisin twist O∗syn{i} is also in C: the case i = 0 is the previous
step, and for i 6= 0 since syntomic cohomology vanishes for i negative or greater than
the dimension of the scheme (here 0) both sides vanish for i 6= 0.

Step 3. Recall that there is a canonical map j� : ∗� → ∗syn, given by gluing the maps

j± : ∗� → ∗N . We claim that E = j�∗O∗� is also in C. First, observe that it is
sufficient to check that ηE is an isomorphism modulo p, as a map of Zp-modules
is an isomorphism if and only if it induces an isomorphism modulo p. Now we

need to know something about ∗syn = (SpecFp)syn. First, ∗� = (SpecFp)� is just
Spf Zp. Passing to ∗N is given by taking the Rees algebra (Spf Zp[u, t]/(ut− p))/Gm

for t in degree 1 and u in degree −1. This is greatly simplified modulo p: here
it is just (SpecFp[u, t]/(ut))/Gm, which we can think of as a pair of intersecting
axes, one labeled by t and one by u, modulo Gm. The images of j+ and j− are
given by the loci t 6= 0 and u 6= 0 respectively: e.g. if t 6= 0 then u = 0 and so

this is just (SpecFp[t±1])/Gm = Gm/Gm mod p = SpecFp, which is the same as ∗�
modulo p. Finally we can understand ∗syn as gluing the loci t 6= 0 and u 6= 0 (and
quotienting by Gm). In particular this means there are two points of ∗syn: an open
point j� : Spf Zp → ∗syn, and a closed point iH : (SpecFp)/Gm → ∗syn coming from
the locus t = u = 0 of ∗N .

If we write jN : ∗N → ∗syn for the projection, the above description gives an exact
triangle

O∗syn/p→ jN∗O∗N /u⊕ jN∗O∗N /t→ j�∗O∗�/p⊕ iH∗O∗/Gm .

Applying the functor RHom∗syn(E,−) corepresented by E kills both middle terms
as well as iH∗O∗/Gm . The latter claim is clear since j� and iH have distinct images;
for the former, by adjunction it suffices to show that on the loci cut out by u = 0
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and t = 0, both of which are isomorphic to A1/Gm, the inclusion j of the open
point Gm/Gm gives RHom(j∗O,O) = 0, which follows by a formal completeness
argument. Thus we have an exact triangle

RHom(E,O∗syn/p) ' E∨/p→ 0→ RHom(E,E/p) ' E/p,

and so an isomorphism
E∨/p ' E/p[1],

which is just η∨E/p.

Step 4. It follows from the previous step that in fact for any E ∈ Perf(∗�) we have j�∗E

in C: indeed, any perfect complex on ∗� = Spf Zp is a perfect complex of complete
Zp-modules and so is built from copies of OSpf Zp = O∗� , so we are reduced to the
claim of Step 3.

Step 5. We claim that further for any E ∈ Perf(∗N ), we have jN∗E in C. We mentioned in a
previous talk that Perf(∗N ) is generated (under finite colimits, shifts, and retracts)
by O∗N {i} for integers i. By the projection formula, (jN∗O∗N {i}) ⊗ O∗syn{i} =
jN∗(O∗N {i} ⊗ j∗NO∗syn{i}) = jN∗O∗N since j∗NO∗syn{i} = O∗N {−i} from a previous
talk, so it suffices to show the claim for jN∗O∗N since we already know it for O∗syn{i}
(by Step 2 above). By the gluing description of ∗syn, we have an exact triangle

O∗syn → jN∗O∗N → j�∗O∗� ,

so since the outer two terms lie in C so must the inner one.

Step 6. Finally, for any E ∈ Perf(∗syn), tensoring the above triangle with E gives

E → E ⊗ jN∗O∗N = jN∗j
∗
NE → E ⊗ j�∗O∗� = j�∗j

∗
�
E,

and so the second and third terms lie in C by steps 4 and 5 and so so does the first.
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